Relevant parameter changes in structural break models

被引:7
|
作者
Dufays, Arnaud [1 ,2 ]
Rombouts, Jeroen V. K. [3 ]
机构
[1] Univ Namur, Dept Business Adm, Namur, Belgium
[2] Univ Laval, Dept Econ, Quebec City, PQ, Canada
[3] ESSEC Business Sch, 3 Ave Bernard Hirsch, Cergy Pontoise 95021, France
关键词
Shrinkage prior; Structural break model; Relevant parameter change; Bayesian inference; BAYESIAN VARIABLE SELECTION; NONSTATIONARY TIME-SERIES; MULTIPLE CHANGE-POINT; DIFFERENTIAL EVOLUTION; SHRINKAGE; INFERENCE; DISTRIBUTIONS; INSTABILITY; SIMULATION; SPARSITY;
D O I
10.1016/j.jeconom.2019.10.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
Structural break time series models, which are commonly used in macroeconomics and finance, capture unknown structural changes by allowing for abrupt changes to model parameters. However, many specifications suffer from an over-parametrization issue, since typically all parameters have to change when a break occurs. We introduce a sparse change-point model to detect which parameters change over time. We propose a shrinkage prior distribution, which controls model parsimony by limiting the number of parameters that change from one structural break to another. We develop a Bayesian sampler for inference on the sparse change-point model. An extensive simulation study based on AR, ARMA and GARCH processes highlights the excellent performance of the sampler. We provide several empirical applications including an out-of-sample forecasting exercise showing that the Sparse change-point framework compares favorably with other recent time-varying parameter processes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 78
页数:33
相关论文
共 50 条
  • [41] Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant?
    Kuhn, H. Georg
    Cooper-Kuhn, Christi M.
    Boekhoorn, Karin
    Lucassen, Paul J.
    [J]. EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 2007, 257 (05) : 281 - 289
  • [42] Picomolar Traces of Americium(III) Introduce Drastic Changes in the Structural Chemistry of Terbium(III): A Break in the "Gadolinium Break"
    Welch, Jan M.
    Mueller, Danny
    Knoll, Christian
    Wilkovitsch, Martin
    Giester, Gerald
    Ofner, Johannes
    Lendl, Bernhard
    Weinberger, Peter
    Steinhauser, Georg
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (43) : 13264 - 13269
  • [43] Specification and structural break tests for additive models with applications to realized variance data
    Fengler, M. R.
    Mammen, E.
    Vogt, M.
    [J]. JOURNAL OF ECONOMETRICS, 2015, 188 (01) : 196 - 218
  • [44] Structural-break models under mis-specification: Implications for forecasting
    Koo, Bonsoo
    Seo, Myung Hwan
    [J]. JOURNAL OF ECONOMETRICS, 2015, 188 (01) : 166 - 181
  • [45] Structural Break Detection in Non-Stationary Network Vector Autoregression Models
    Han, Yi
    Lee, Thomas C. M.
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4134 - 4145
  • [46] Learning about parameter and structural uncertainty in carbon cycle models
    O'Neill, Brian C.
    Melnikov, Nikolai B.
    [J]. CLIMATIC CHANGE, 2008, 89 (1-2) : 23 - 44
  • [47] Learning about parameter and structural uncertainty in carbon cycle models
    Brian C. O’Neill
    Nikolai B. Melnikov
    [J]. Climatic Change, 2008, 89 : 23 - 44
  • [48] Structural and parameter uncertainty in Bayesian cost-effectiveness models
    Jackson, Christopher H.
    Sharples, Linda D.
    Thompson, Simon G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2010, 59 : 233 - 253
  • [49] blavaan: Bayesian Structural Equation Models via Parameter Expansion
    Merkle, Edgar C.
    Rosseel, Yves
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2018, 85 (04): : 1 - 30
  • [50] Parameter calibrations and application of micromechanical fracture models of structural steels
    Liao, Fangfang
    Wang, Wei
    Chen, Yiyi
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2012, 42 (02) : 153 - 174