Smooth Convex Optimization Using Sub-Zeroth-Order Oracles

被引:0
|
作者
Karabag, Mustafa O. [1 ]
Neary, Cyrus [1 ]
Topcu, Ufuk [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
SIMPLEX-METHOD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of minimizing a smooth, Lipschitz, convex function over a compact, convex set using sub-zerothorder oracles: an oracle that outputs the sign of the directional derivative for a given point and a given direction, an oracle that compares the function values for a given pair of points, and an oracle that outputs a noisy function value for a given point. We show that the sample complexity of optimization using these oracles is polynomial in the relevant parameters. The optimization algorithm that we provide for the comparator oracle is the first algorithm with a known rate of convergence that is polynomial in the number of dimensions. We also give an algorithm for the noisy-value oracle that incurs sublinear regret in the number of queries and polynomial regret in the number of dimensions.
引用
收藏
页码:3815 / 3822
页数:8
相关论文
共 50 条
  • [31] A Generalized Alternating Linearization Bundle Method for Structured Convex Optimization with Inexact First-Order Oracles
    Tang, Chunming
    Li, Yanni
    Dong, Xiaoxia
    He, Bo
    ALGORITHMS, 2020, 13 (04)
  • [32] Certified Multifidelity Zeroth-Order Optimization
    de Montbrun, Etienne
    Gerchinovitz, Sebastien
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (04): : 1135 - 1164
  • [33] Level bundle methods for constrained convex optimization with various oracles
    van Ackooij, Wim
    de Oliveira, Welington
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 57 (03) : 555 - 597
  • [34] Level bundle methods for constrained convex optimization with various oracles
    Wim van Ackooij
    Welington de Oliveira
    Computational Optimization and Applications, 2014, 57 : 555 - 597
  • [35] The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization
    Kovalev, Dmitry
    Gasnikov, Alexander
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [36] Negative curvature obstructs acceleration for strongly geodesically convex optimization, even with exact first-order oracles
    Criscitiello, Christopher
    Boumal, Nicolas
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178 : 496 - 542
  • [37] Stochastic Zeroth-order Optimization in High Dimensions
    Wang, Yining
    Du, Simon S.
    Balakrishnan, Sivaraman
    Singh, Aarti
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [38] UNBIASED GRADIENT SIMULATION FOR ZEROTH-ORDER OPTIMIZATION
    Chen, Guanting
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 2947 - 2959
  • [39] ZO-JADE: Zeroth-Order Curvature-Aware Distributed Multi-Agent Convex Optimization
    Maritan, Alessio
    Schenato, Luca
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1813 - 1818
  • [40] Zeroth-order optimization with orthogonal random directions
    Kozak, David
    Molinari, Cesare
    Rosasco, Lorenzo
    Tenorio, Luis
    Villa, Silvia
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1179 - 1219