Smooth Convex Optimization Using Sub-Zeroth-Order Oracles

被引:0
|
作者
Karabag, Mustafa O. [1 ]
Neary, Cyrus [1 ]
Topcu, Ufuk [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
SIMPLEX-METHOD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of minimizing a smooth, Lipschitz, convex function over a compact, convex set using sub-zerothorder oracles: an oracle that outputs the sign of the directional derivative for a given point and a given direction, an oracle that compares the function values for a given pair of points, and an oracle that outputs a noisy function value for a given point. We show that the sample complexity of optimization using these oracles is polynomial in the relevant parameters. The optimization algorithm that we provide for the comparator oracle is the first algorithm with a known rate of convergence that is polynomial in the number of dimensions. We also give an algorithm for the noisy-value oracle that incurs sublinear regret in the number of queries and polynomial regret in the number of dimensions.
引用
收藏
页码:3815 / 3822
页数:8
相关论文
共 50 条
  • [1] Online Optimization Using Zeroth Order Oracles
    Shames, Iman
    Selvaratnam, Daniel
    Manton, Jonathan H.
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (01): : 31 - 36
  • [2] Zeroth-Order Random Subspace Algorithm for Non-smooth Convex Optimization
    Nozawa, Ryota
    Poirion, Pierre-Louis
    Takeda, Akiko
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
  • [3] Convex optimization using quantum oracles
    van Apeldoorn, Joran
    Gilyen, Andras
    Gribling, Sander
    de Wolf, Ronald
    QUANTUM, 2020, 4
  • [4] A zeroth order method for stochastic weakly convex optimization
    Kungurtsev, V
    Rinaldi, F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (03) : 731 - 753
  • [5] A zeroth order method for stochastic weakly convex optimization
    V. Kungurtsev
    F. Rinaldi
    Computational Optimization and Applications, 2021, 80 : 731 - 753
  • [6] Safe Zeroth-Order Convex Optimization Using Quadratic Local Approximations
    Guo, Baiwei
    Jiang, Yuning
    Kamgarpour, Maryam
    Ferrari-Trecate, Giancarlo
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [7] Distributed Consensus Optimization under Zeroth-Order Oracles and Uniform Quantization
    Ding, Jingjing
    Yuan, Deming
    Jiang, Guo-Ping
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6103 - 6107
  • [8] Optimisation with Zeroth-Order Oracles in Formation
    Michael, Elad
    Zelazo, Daniel
    Wood, Tony A.
    Manzie, Chris
    Shames, Iman
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 5354 - 5359
  • [9] Accelerated Zeroth-order Method for Non-Smooth Stochastic Convex Optimization Problem with Infinite Variance
    Kornilov, Nikita
    Shamir, Ohad
    Lobanov, Aleksandr
    Dvinskikh, Darina
    Gasnikov, Alexander
    Shibaev, Innokentiy
    Gorbunov, Eduard
    Horvath, Samuel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36, NEURIPS 2023, 2023,
  • [10] A Generic Approach for Accelerating Stochastic Zeroth-Order Convex Optimization
    Yu, Xiaotian
    King, Irwin
    Lyu, Michael R.
    Yang, Tianbao
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3040 - 3046