Distributed Stochastic Gradient Descent with Cost-Sensitive and Strategic Agents

被引:1
|
作者
Akbay, Abdullah Basar [1 ]
Tepedelenlioglu, Cihan [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
D O I
10.1109/IEEECONF56349.2022.10051928
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study considers a federated learning setup where cost-sensitive and strategic agents train a learning model with a server. During each round, each agent samples a minibatch of training data and sends his gradient update. As an increasing function of his minibatch size choice, the agent incurs a cost associated with the data collection, gradient computation and communication. The agents have the freedom to choose their minibatch size and may even opt out from training. To reduce his cost, an agent may diminish his minibatch size, which may also cause an increase in the noise level of the gradient update. The server can offer rewards to compensate the agents for their costs and to incentivize their participation but she lacks the capability of validating the true minibatch sizes of the agents. To tackle this challenge, the proposed reward mechanism evaluates the quality of each agent's gradient according to the its distance to a reference which is constructed from the gradients provided by other agents. It is shown that the proposed reward mechanism has a cooperative Nash equilibrium in which the agents determine the minibatch size choices according to the requests of the server.
引用
收藏
页码:1238 / 1242
页数:5
相关论文
共 50 条
  • [41] Cost-sensitive face recognition
    Zhang, Yin
    Zhou, Zhi-Hua
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3674 - 3681
  • [42] Cost-sensitive KNN classification
    Zhang, Shichao
    NEUROCOMPUTING, 2020, 391 : 234 - 242
  • [43] Adversarial Cost-Sensitive Classification
    Asif, Kaiser
    Xing, Wei
    Behpour, Sima
    Ziebart, Brian D.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 92 - 101
  • [44] A cost-sensitive constrained Lasso
    Blanquero, Rafael
    Carrizosa, Emilio
    Ramirez-Cobo, Pepa
    Remedios Sillero-Denamiel, M.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (01) : 121 - 158
  • [45] Cost-sensitive Texture Classification
    Schaefer, Gerald
    Krawczyk, Bartosz
    Doshi, Niraj P.
    Nakashima, Tomoharu
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 105 - 108
  • [46] Cost-Sensitive Face Recognition
    Zhang, Yin
    Zhou, Zhi-Hua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) : 1758 - 1769
  • [47] An Adaptive Cost-sensitive Classifier
    Chen, Xiaolin
    Song, Enming
    Ma, Guangzhi
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 1, 2010, : 699 - 701
  • [48] Business Failure Prediction Based on a Cost-Sensitive Extreme Gradient Boosting Machine
    Zou, Yao
    Gao, Changchun
    Gao, Han
    IEEE ACCESS, 2022, 10 : 42623 - 42639
  • [49] A cost-sensitive constrained Lasso
    Rafael Blanquero
    Emilio Carrizosa
    Pepa Ramírez-Cobo
    M. Remedios Sillero-Denamiel
    Advances in Data Analysis and Classification, 2021, 15 : 121 - 158
  • [50] Cost-Sensitive Online Classification
    Wang, Jialei
    Zhao, Peilin
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (10) : 2425 - 2438