Diagnosis of Epilepsy from EEG Signals Using Global Wavelet Power Spectrum

被引:6
|
作者
Avdakovic, Samir [2 ,5 ]
Omerhodzic, Ibrahim [3 ,5 ]
Badnjevic, Almir [1 ,5 ]
Boskovic, Dusanka [4 ,5 ]
机构
[1] Verlab Ltd Sarajevo Bosnia & Herzegovina, Sarajevo, Bosnia & Herceg
[2] EPC Elektroprivreda B&H, Dept Dev, Sarajevo, Bosnia & Herceg
[3] Clin Ctr Univ Sarajevo, Dept Neurosurgery, Sarajevo, Bosnia & Herceg
[4] Univ Sarajevo, Fac Elect Engn, Sarajevo, Bosnia & Herceg
[5] Med & Biol Engn Soc Bosnia & Herzegovina, Sarajevo, Bosnia & Herceg
关键词
EEG; Epilepsy; Wavelet transform; Global Wavelet Spectrum; SEIZURE; CLASSIFICATION;
D O I
10.1007/978-3-319-11128-5_120
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Epilepsy diagnosis using EEG signals represents important segment in general clinical practice. However, EEG signal features such as amplitude, are not helpful in order to visually distinguish between healthy and epileptic patients; and therefore additional signal processing and results analysis is needed. In this paper, the analyses and the results of the properties of EEG signals of healthy subjects and patients with an epileptic syndrome without seizure, using global wavelet power spectrum (GWS) are presented. The results of the analysis of the 200 EEG signals confirm that this approach can enable a simple recognition of epileptic EEG signals in a standard clinical practice. The results indicate that the magnitudes of the EEG signal components for the patients with an epileptic syndrome are considerably different to the EEG signal components of the healthy subjects. Also, the GWS dominant values for selected signals of patients with an epileptic syndrome are found in the delta and theta frequency bands.
引用
收藏
页码:481 / +
页数:2
相关论文
共 50 条
  • [11] EEG Signals Classification and Diagnosis Using Wavelet Transform and Artificial Neural Network
    Chavan, Arun
    Kolte, Mahesh
    2017 INTERNATIONAL CONFERENCE ON NASCENT TECHNOLOGIES IN ENGINEERING (ICNTE-2017), 2017,
  • [12] Epilepsy Diagnosis Using Directed Acyclic Graph SVM Technique in EEG Signals
    Babu, Shyam
    Wadhwani, Arun Kumar
    TRAITEMENT DU SIGNAL, 2024, 41 (06) : 3163 - 3172
  • [13] Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform
    Nishad, A.
    Upadhyay, A.
    Reddy, G. Ravi Shankar
    Bajaj, V.
    ELECTRONICS LETTERS, 2020, 56 (25) : 1370 - 1372
  • [14] PREDICTION OF SPIKE-WAVE BURSTS IN ABSENCE EPILEPSY BY EEG POWER-SPECTRUM SIGNALS
    SIEGEL, A
    GRADY, CL
    MIRSKY, AF
    EPILEPSIA, 1982, 23 (01) : 47 - 60
  • [15] Classification of EEG signals using the wavelet transform
    Hazarika, N
    Chen, JZ
    Tsoi, AC
    Sergejew, A
    SIGNAL PROCESSING, 1997, 59 (01) : 61 - 72
  • [16] Classification of EEG signals using the wavelet transform
    Hazarika, N
    Chen, JZ
    Tsoi, AC
    Sergejew, A
    DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 89 - 92
  • [17] Comparing EEG-Based Epilepsy Diagnosis Using Neural Networks and Wavelet Transform
    Yousefi, Mohammad Reza
    Dehghani, Amin
    Golnejad, Saina
    Hosseini, Melika Mohammad
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [18] The classification of visual stimulus using wavelet transform from EEG signals
    Kim, JH
    Whang, MC
    Kim, JH
    ADVANCES IN OCCUPATIONAL ERGONOMICS AND SAFETY, VOL 2, 1998, 2 : 733 - 736
  • [19] An Amplitude Differentiation Model Using Deep Learning for Early Diagnosis of Epilepsy Using EEG Signals
    Chinnadurai, Kannika Parameshwari
    Krishnan, Batri
    Raju, Aravind Britto Karupanan
    Traitement du Signal, 2025, 42 (01) : 397 - 407
  • [20] Early Detection of Epilepsy using EEG signals
    Kumar, Selvin Pradeep S.
    Ajitha, L.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1509 - 1514