Diagnosis of Epilepsy from EEG Signals Using Global Wavelet Power Spectrum

被引:6
|
作者
Avdakovic, Samir [2 ,5 ]
Omerhodzic, Ibrahim [3 ,5 ]
Badnjevic, Almir [1 ,5 ]
Boskovic, Dusanka [4 ,5 ]
机构
[1] Verlab Ltd Sarajevo Bosnia & Herzegovina, Sarajevo, Bosnia & Herceg
[2] EPC Elektroprivreda B&H, Dept Dev, Sarajevo, Bosnia & Herceg
[3] Clin Ctr Univ Sarajevo, Dept Neurosurgery, Sarajevo, Bosnia & Herceg
[4] Univ Sarajevo, Fac Elect Engn, Sarajevo, Bosnia & Herceg
[5] Med & Biol Engn Soc Bosnia & Herzegovina, Sarajevo, Bosnia & Herceg
关键词
EEG; Epilepsy; Wavelet transform; Global Wavelet Spectrum; SEIZURE; CLASSIFICATION;
D O I
10.1007/978-3-319-11128-5_120
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Epilepsy diagnosis using EEG signals represents important segment in general clinical practice. However, EEG signal features such as amplitude, are not helpful in order to visually distinguish between healthy and epileptic patients; and therefore additional signal processing and results analysis is needed. In this paper, the analyses and the results of the properties of EEG signals of healthy subjects and patients with an epileptic syndrome without seizure, using global wavelet power spectrum (GWS) are presented. The results of the analysis of the 200 EEG signals confirm that this approach can enable a simple recognition of epileptic EEG signals in a standard clinical practice. The results indicate that the magnitudes of the EEG signal components for the patients with an epileptic syndrome are considerably different to the EEG signal components of the healthy subjects. Also, the GWS dominant values for selected signals of patients with an epileptic syndrome are found in the delta and theta frequency bands.
引用
收藏
页码:481 / +
页数:2
相关论文
共 50 条
  • [1] Automated diagnosis of epilepsy using EEG power spectrum
    Kerr, Wesley T.
    Anderson, Ariana
    Lau, Edward P.
    Cho, Andrew Y.
    Xia, Hongjing
    Bramen, Jennifer
    Douglas, Pamela K.
    Braun, Eric S.
    Stern, John M.
    Cohen, Mark S.
    EPILEPSIA, 2012, 53 (11) : e189 - e192
  • [2] Alcoholism Diagnosis from EEG Signals using Continuous Wavelet Transform
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    2014 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2014,
  • [3] Automatic Diagnosis of Epilepsy from EEG Signals using Discrete Cosine Transform
    Yagmur, Fatma Demirezen
    Sertbas, Ahmet
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [4] Automated diagnosis of epilepsy from EEG signals using ensemble learning approach
    Abdulhay, Enas
    Elamaran, V
    Chandrasekar, M.
    Balaji, V. S.
    Narasimhan, K.
    PATTERN RECOGNITION LETTERS, 2020, 139 : 174 - 181
  • [5] Automatic Identification of Epilepsy by HOS and Power Spectrum parameters using EEG Signals: A comparative study
    Chua, K. C.
    Chandran, V
    Acharya, Rajendra
    Lim, C. M.
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 3824 - +
  • [6] Epilepsy Diagnosis from EEG Signals Using Continuous Wavelet Transform-Based Depthwise Convolutional Neural Network Model
    Disli, Firat
    Gedikpinar, Mehmet
    Firat, Huseyin
    Sengur, Abdulkadir
    Guldemir, Hanifi
    Koundal, Deepika
    DIAGNOSTICS, 2025, 15 (01)
  • [7] Analysis of Electroencephalogram on Children with Epilepsy Using Global Wavelet Spectrum
    Zahirovic, Salko
    Dautbasic, Nedis
    Dedovic, Maja Muftic
    Zubcevic, Smail
    Avdakovic, Samir
    ADVANCED TECHNOLOGIES, SYSTEMS, AND APPLICATIONS, 2017, 3 : 27 - 35
  • [8] Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
    Acharya, U. Rajendra
    Fujita, H.
    Sudarshan, Vidya K.
    Bhat, Shreya
    Koh, Joel E. W.
    KNOWLEDGE-BASED SYSTEMS, 2015, 88 : 85 - 96
  • [9] Diagnosis of Epilepsy Disease with Deep Learning Methods Using EEG Signals
    Genis, Yigithan
    Aydin, Eda Akman
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [10] Diagnosis and Classification of Epilepsy Risk Levels from EEG Signals Using Fuzzy Aggregation Techniques
    Sukanesh, R.
    Harikumar, R.
    ENGINEERING LETTERS, 2007, 14 (01)