Bilinear auto-Backlund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves

被引:168
|
作者
Shen, Yuan
Tian, Bo [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Shallow water waves; (3+1)-dimensional generalized nonlinear evolution equation; Hirota method; Symbolic computation; Bilinear auto-Backlund transformation; Soliton solution;
D O I
10.1016/j.aml.2021.107301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Waves are seen in the atmosphere, oceans, etc. As one of the most common natural phenomena, water waves attract the attention of researchers. For the shallow water waves, a (3+1)-dimensional generalized nonlinear evolution equation is hereby investigated via the symbolic computation. Based on the Hirota method, we present three bilinear auto-Backlund transformations, along with some soliton solutions. Our results depend on the water-wave coefficients in that equation. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Backlund transformation and solutions of a (3+1)-dimensional nonlinear evolution equation
    Zhao, Zhonglong
    Zhang, Yufeng
    Rui, Wenjuan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 456 - 462
  • [22] On the collision phenomena to the (3+1)-dimensional generalized nonlinear evolution equation: Applications in the shallow water waves
    Younas, Usman
    Sulaiman, T. A.
    Ren, Jingli
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (10):
  • [23] Symmetry analysis for the (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves
    Hussain, A.
    Usman, M.
    Ahmed, Hala M. E.
    Ibrahim, T. F.
    Tahir, Ranya A.
    Hassan, Ahmed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 85 : 9 - 18
  • [24] Auto-Backlund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid
    Zhou, Tian-Yu
    Tian, Bo
    Shen, Yuan
    Gao, Xiao-Tian
    NONLINEAR DYNAMICS, 2023, 111 (09) : 8647 - 8658
  • [25] Auto-Backlund transformation and new exact solutions of the (3+1)-dimensional KP equation with variable coefficients
    Liu, Jian-Guo
    Zeng, Zhifang
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2013, 7 (01)
  • [26] A bilinear Backlund transformation of a (3+1)-dimensional generalized KP equation
    Ma, Wen-Xiu
    Abdeljabbar, Alrazi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1500 - 1504
  • [27] A New Auto-Backlund Transformation and Two-Soliton Solution for (3+1)-Dimensional Jimbo-Miwa Equation
    Liu Chun-Ping
    Zhou Ling
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (02) : 213 - 216
  • [28] Auto-Backlund transformation for a nonintegrable generalized shallow-water wave equation
    Gao, YT
    Tian, B
    Hong, WY
    Zhou, MJ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2001, 116 (01): : 115 - 117
  • [29] Backlund transformation and soliton solutions for two (3+1)-dimensional nonlinear evolution equations
    Wang, Lin
    Qu, Qixing
    Qin, Liangjuan
    MODERN PHYSICS LETTERS B, 2016, 30 (24):
  • [30] Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves
    Shen, Yuan
    Tian, Bo
    Liu, Shao-Hua
    PHYSICS LETTERS A, 2021, 405