Encapsulating hollow Fe3O4 in intertwined N-doped carbon nanofibers for high-performance supercapacitors and sodium-ion batteries

被引:10
|
作者
Huang, Yingying [1 ]
Zhou, Jiawei [1 ]
Zhang, Yi [2 ]
Yan, Ling [3 ]
Bao, Shuo [1 ]
Yin, Yansheng [2 ]
Lu, Jinlin [1 ,2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Mat & Met, Anshan 114051, Peoples R China
[2] Guangzhou Maritime Univ, Res Ctr Corros & Eros Proc Control Equipment & Mat, Guangzhou 510725, Guangdong, Peoples R China
[3] State Key Lab Met Mat Marine Equipment & Applicat, Anshan 114021, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3O4; Carbon nanofibers; Encapsulated structure; Supercapacitors; Sodium-ion half cells; ANODE MATERIALS; GRAPHENE; NANOCOMPOSITE; NANOPARTICLES; NANOSHEETS; COMPOSITE; STRATEGY;
D O I
10.1016/j.jallcom.2022.165672
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a promising electrode for energy storage, Fe3O4 has many intriguing advantages, such as a high specific capacity, low cost, low toxicity, wide potential window and environmental benignity. However, the multiphase changes of iron oxide during the charge and discharge process can give rise to a sharp decrease in its capacity. In addition, the low conductivity of Fe3O4 may hinder the charge transfer and ion diffusion during redox process. In order to solve the above issues, this study mainly attempts to design a nanocomposite of Fe3O4 encapsulated in intertwined N-doped carbon nanofibers (CNFs) via using electrospinning and hightemperature calcination. The sealed structure can efficiently relieve the volume effect of Fe3O4 and raise the stability of electrodes. While a 3-dimensional interconnected conductive network composed of CNFs can increase the electroconductibility of electrodes. At the same time, the N-doping increases active sites on the surface of CNFs, providing more space for ions and charges storage. Herein, different amounts of Fe3O4 are encapsulated in N-doped CNFs (Fe3O4-CNFs). Fe3O4-CNFs with 40 % content of Fe3O4 (4Fe3O4-CNFs) deliver splendid electrochemical performances for all-solid-state supercapacitors and sodium-ion batteries. The specific capacitance of 4Fe3O4-CNFs supercapacitor is 184.5 F g-1 and maintains 86.2 % of initial capacity at 2 A g-1 after 5000 times. Furthermore, 4Fe3O4-CNFs as the anode for the half cell vs. Na+/Na demonstrate a splendid specific capacity of 628.1 mAh g-1 at 0.02 A g-1 and can maintain 358.1 mA h g-1 after cycling for 200 laps at 500 mA g-1. Therefore, 4Fe3O4-CNFs can be widely used in energy storage. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries
    Chengzhi Zhang
    Donghai Wei
    Fei Wang
    Guanhua Zhang
    Junfei Duan
    Fei Han
    Huigao Duan
    Jinshui Liu
    Journal of Energy Chemistry, 2021, 53 (02) : 26 - 35
  • [22] Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries
    Zhang, Chengzhi
    Wei, Donghai
    Wang, Fei
    Zhang, Guanhua
    Duan, Junfei
    Han, Fei
    Duan, Huigao
    Liu, Jinshui
    JOURNAL OF ENERGY CHEMISTRY, 2021, 53 : 26 - 35
  • [23] Boosting sodium-ion batteries performance by N-doped carbon spheres featuring porous and hollow structures
    Yang, Ying
    Deng, Tao
    Nie, Xuyuan
    Wen, Huaiyu
    Cao, Liuyue
    Sun, Shigang
    Zhang, Binwei
    Chemical Communications, 2024, 60 (90) : 13203 - 13206
  • [24] Constructing CoO/Co3S4 Heterostructures Embedded in N-doped Carbon Frameworks for High-Performance Sodium-Ion Batteries
    Guo, Can
    Zhang, Wenchao
    Liu, Yi
    He, Jiapeng
    Yang, Shun
    Liu, Mingkai
    Wang, Qinghong
    Cuo, Zaiping
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (29)
  • [25] Anchoring mesoporous Fe3O4 nanospheres onto N-doped carbon nanotubes toward high-performance composite electrodes for supercapacitors
    Zhang, Xiaoliang
    Yang, Wenshu
    Liu, Aifeng
    Guo, Zengcai
    Mu, Jingbo
    Hou, Junxian
    Che, Hongwei
    CERAMICS INTERNATIONAL, 2020, 46 (14) : 22373 - 22382
  • [26] Encapsulating silicon nanoparticles into N-doped carbon film as a high-performance anode for lithium ion batteries
    Xing, Zheng
    Huang, Chunlai
    Deng, Yichen
    Zhao, Yulong
    Ju, Zhicheng
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (04)
  • [27] ZnSe nanoparticles decorated with hollow N-doped carbon nanocubes for high-performance anode material of sodium ion batteries
    Jia M.
    Jin Y.
    Zhao C.
    Zhao P.
    Jia M.
    Jin, Yuhong (jinyh@bjut.edu.cn), 1600, Elsevier Ltd (831):
  • [28] Fe3O4 Anchored onto Helical Carbon Nanofibers as High-Performance Anode in Lithium-Ion Batteries
    Ren, Shuhua
    Prakash, Raju
    Wang, Di
    Chakravadhanula, Venkata Sai Kiran
    Fichtner, Maximilian
    CHEMSUSCHEM, 2012, 5 (08) : 1397 - 1400
  • [29] N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries
    Wang, Xiujuan
    Ma, Jingyao
    Wang, Jiamei
    Li, Xifei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 821
  • [30] From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries
    Baisheng Zhao
    Yichun Ding
    Zhenhai Wen
    Transactions of Tianjin University, 2019, (05) : 429 - 436