Fatigue life prediction for concrete bridges using Bayesian network

被引:0
|
作者
Yuan, Ming [1 ]
Liu, Yun [2 ]
Yan, Donghuang [1 ]
Huang, Lian [1 ]
机构
[1] Changsha Univ Sci & Technol, Changsha, Peoples R China
[2] Hunan Commun Polytech, Changsha, Peoples R China
关键词
HIGH-CYCLE FATIGUE; SHEAR; GIRDERS; MODEL; BEHAVIOR;
D O I
10.1201/9780429279119-367
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A probabilistic fatigue life prediction framework for concrete bridges is proposed in this study. The proposed fatigue analysis framework combines the fatigue crack growth-based material life prediction model and a nonlinear structural analysis method. A Bayesian network is established to predict the fatigue life of a concrete bridge according to the proposed framework. The proposed methodology is demonstrated using an experimental example for fatigue life prediction of a concrete box-girder, and the ratio of the posterior predicted mean (updating time n=8) to the test value decreases to 33%similar to 1% in the current investigation.
引用
收藏
页码:2690 / 2696
页数:7
相关论文
共 50 条
  • [31] Fatigue life of concrete bridges under consideration of increasing traffic loads
    Gruenberg, Juergen
    Hansen, Michael
    Liebig, Jan Peter
    BETON- UND STAHLBETONBAU, 2007, 102 (09) : 596 - 606
  • [32] Fatigue life of short-span reinforced concrete railway bridges
    Laboratory for Concrete Technology and Structural Behaviour , University of Porto, Portugal
    不详
    Struct. Concr., 2008, 4 (215-222):
  • [33] Fatigue life assessment of reinforced concrete bridges from monitoring data
    Junges, P.
    Pinto, R. C. A.
    Fadel Miguel, L. F.
    MAINTENANCE, SAFETY, RISK, MANAGEMENT AND LIFE-CYCLE PERFORMANCE OF BRIDGES, 2018, : 634 - 641
  • [34] Load Spectrum and Fatigue Life Computer Analysis of Prestressed Concrete Bridges
    Xin Qin
    Dou Yuanming
    Chen Wan
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2015, 9 (07): : 247 - 265
  • [35] Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference
    Karandikar, Jaydeep M.
    Kim, Nam Ho
    Schmitz, Tony L.
    ENGINEERING FRACTURE MECHANICS, 2012, 96 : 588 - 605
  • [36] Uncertainty Analysis in Fatigue Life Prediction of Gas Turbine Blades Using Bayesian Inference
    Li, Yan-Feng
    Zhu, Shun-Peng
    Li, Jing
    Peng, Weiwen
    Huang, Hong-Zhong
    INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES, 2015, 32 (04) : 319 - 324
  • [37] Prediction and Uncertainty Quantification of the Fatigue Life of Corroded Cable Steel Wires Using a Bayesian Physics-Informed Neural Network
    Liu, Zhenwen
    Kong, Xuan
    Deng, Lu
    Peng, Hui
    Zhang, Jinquan
    Journal of Bridge Engineering, 2025, 30 (05)
  • [38] A neural network approach to fatigue life prediction
    Figueira Pujol, Joao Carlos
    Andrade Pinto, Joao Mario
    INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (03) : 313 - 322
  • [39] Assessment of Reliability and Remaining Fatigue Life of Topside Piping Using Dynamic Bayesian Network
    Keprate, Arvind
    Ratnayake, R. M. Chandima
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2019, : 1114 - 1118
  • [40] Prediction of fatigue crack propagation based on dynamic Bayesian network
    Wang, Wei
    Yang, Yanfang
    Li, Mengzhen
    Liu, Weikai
    Liu, Zhiping
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (11)