Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens

被引:96
|
作者
Wroblewska, Aleksandra [1 ,2 ]
Dhainaut, Maxime [1 ,2 ]
Ben-Zvi, Benjamin [2 ]
Rose, Samuel A. [1 ,2 ]
Park, Eun Sook [2 ]
Amir, El-Ad David [1 ,3 ,4 ]
Bektesevic, Anela [2 ]
Baccarini, Alessia [2 ]
Merad, Miriam [1 ,3 ,5 ]
Rahman, Adeeb H. [1 ,2 ,3 ,4 ]
Brown, Brian D. [1 ,2 ,3 ,6 ,7 ]
机构
[1] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Human Immune Monitoring Ctr, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Dept Oncol Sci, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Diabet Obes & Metab Inst, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Mindich Child Hlth & Dev Inst, New York, NY 10029 USA
关键词
MASS CYTOMETRY; CANCER-IMMUNOTHERAPY; GENETIC SCREENS; GENOME; IMMUNE; LIBRARIES; VISUALIZATION; CIRCUITS; BLOCKADE; MELANOMA;
D O I
10.1016/j.cell.2018.09.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level. We synthesized modules encoding triplet combinations of linear epitopes to generate >100 unique protein barcodes (Pro-Codes). Pro-Code-expressing vectors were introduced into cells and analyzed by CyTOF mass cytometry. Using just 14 antibodies, we detected 364 Pro-Code populations; establishing the largest set of protein-based reporters. By pairing each Pro-Code with a different CRISPR, we simultaneously analyzedmultiple phenotypic markers, including phospho-signaling, on dozens of knockouts. Pro-Code/CRISPR screens found two interferon-stimulated genes, the immunoproteasome component Psmb8 and a chaperone Rtp4, are important for antigen-dependent immune editing of cancer cells and identified Socs1 as a negative regulator of Pd-l1. The Pro-Code technology enables simultaneous high-dimensional proteinlevel phenotyping of 100s of genes with single-cell resolution.
引用
收藏
页码:1141 / +
页数:31
相关论文
共 50 条
  • [21] scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens
    Lin Yang
    Yuqing Zhu
    Hua Yu
    Xiaolong Cheng
    Sitong Chen
    Yulan Chu
    He Huang
    Jin Zhang
    Wei Li
    Genome Biology, 21
  • [22] GiRAFR improves gRNA detection and annotation in single-cell CRISPR screens
    Yu, Qian
    Van Minsel, Paulien
    Galle, Eva
    Thienpont, Bernard
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [23] Exponential family measurement error models for single-cell CRISPR screens
    Barry, Timothy
    Roeder, Kathryn
    Katsevich, Eugene
    BIOSTATISTICS, 2024, 25 (04) : 1254 - 1272
  • [24] scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens
    Yang, Lin
    Zhu, Yuqing
    Yu, Hua
    Cheng, Xiaolong
    Chen, Sitong
    Chu, Yulan
    Huang, He
    Zhang, Jin
    Li, Wei
    GENOME BIOLOGY, 2020, 21 (01)
  • [25] GiRAFR improves gRNA detection and annotation in single-cell CRISPR screens
    Qian Yu
    Paulien Van Minsel
    Eva Galle
    Bernard Thienpont
    Communications Biology, 6
  • [26] scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens
    Yang, Lin
    Zhu, Yuqing
    Yu, Hua
    Cheng, Xiaolong
    Chen, Sitong
    Chu, Yulan
    Huang, He
    Zhang, Jin
    Li, Wei
    CANCER RESEARCH, 2020, 80 (16)
  • [27] Tools for the analysis of high-dimensional single-cell RNA sequencing data
    Wu, Yan
    Zhang, Kun
    NATURE REVIEWS NEPHROLOGY, 2020, 16 (07) : 408 - 421
  • [28] Meeting the Challenges of High-Dimensional Single-Cell Data Analysis in Immunology
    Patil, Subarea
    Heuser, Christoph
    de Almeida, Gustavo P.
    Theis, Fabian J.
    Zielinski, Christina E.
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [29] Diffusion maps for high-dimensional single-cell analysis of differentiation data
    Haghverdi, Laleh
    Buettner, Florian
    Theis, Fabian J.
    BIOINFORMATICS, 2015, 31 (18) : 2989 - 2998
  • [30] Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy
    Gohil, Satyen H.
    Iorgulescu, J. Bryan
    Braun, David A.
    Keskin, Derin B.
    Livak, Kenneth J.
    NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (04) : 244 - 256