The CO2 tracer clock for the Tropical Tropopause Layer

被引:34
|
作者
Park, S.
Jimenez, R.
Daube, B. C.
Pfister, L.
Conway, T. J.
Gottlieb, E. W.
Chow, V. Y.
Curran, D. J.
Matross, D. M.
Bright, A.
Atlas, E. L.
Bui, T. P.
Gao, R.-S.
Twohy, C. H.
Wofsy, S. C.
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA
[5] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA
[6] NOAA, Aeron Lab, Boulder, CO 80303 USA
[7] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA
关键词
D O I
10.5194/acp-7-3989-2007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Observations of CO2 were made in the upper troposphere and lower stratosphere in the deep tropics in order to determine the patterns of large-scale vertical transport and age of air in the Tropical Tropopause Layer (TTL). Flights aboard the NASA WB-57F aircraft over Central America and adjacent ocean areas took place in January and February, 2004 (Pre-AURA Validation Experiment, Pre-AVE) and 2006 (Costa Rice AVE, CR-AVE), and for the same flight dates of 2006, aboard the Proteus aircraft from the surface to 15 km over Darwin, Australia (Tropical Warm Pool International Cloud Experiment, TWP-ICE). The data demonstrate that the TTL is composed of two layers with distinctive features: (1) the lower TTL, 350-360 K (potential temperature(theta); approximately 12-14 km), is subject to inputs of convective outflows, as indicated by layers of variable CO2 concentrations, with air parcels of zero age distributed throughout the layer; (2) the upper TTL, from theta=similar to 360 K to similar to 390 K (14-18 km), ascends slowly and ages uniformly, as shown by a linear decline in CO2 mixing ratio tightly correlated with altitude, associated with increasing age. This division is confirmed by ensemble trajectory analysis. The CO2 concentration at the level of 360 K was 380.0(+/-0.2) ppmv, indistinguishable from surface site values in the Intertropical Convergence Zone (ITCZ) for the flight dates. Values declined with altitude to 379.2(+/-0.2) ppmv at 390 K, implying that air in the upper TTL monotonically ages while ascending. In combination with the winter slope of the CO2 seasonal cycle (+10.8+?-0.4 ppmv/yr), the vertical gradient of -0.78 (+/-0.09) ppmv gives a mean age of 26(+/-3) days for the air at 390 K and a mean ascent rate of 1.5(+/-0.3) mm s(-1). The TTL near 360 K in the Southern Hemisphere over Australia is very close in CO2 composition to the TTL in the Northern Hemisphere over Costa Rica, with strong contrasts emerging at lower altitudes (<360 K). Both Pre-AVE and CR-AVE CO2 observed unexpected input from deep convection over Amazonia deep into the TTL. The CO2 data confirm the operation of a highly accurate tracer clock in the TTL that provides a direct measure of the ascent rate of the TTL and of the age of air entering the stratosphere.
引用
收藏
页码:3989 / 4000
页数:12
相关论文
共 50 条
  • [41] Unprecedented Observations of a Nascent In Situ Cirrus in the Tropical Tropopause Layer
    Reinares Martinez, I.
    Evan, S.
    Wienhold, F. G.
    Brioude, J.
    Jensen, E. J.
    Thornberry, T. D.
    Heron, D.
    Verreyken, B.
    Korner, S.
    Vomel, H.
    Metzger, J. -M.
    Posny, F.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (04)
  • [42] Variability in HDO/H2O abundance ratios in the tropical tropopause layer
    Nassar, Ray
    Bernath, Peter F.
    Boone, Chris D.
    Gettelman, Andrew
    McLeod, Sean D.
    Rinsland, Curtis P.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D21)
  • [43] Physical processes in the tropical tropopause layer and their roles in a changing climate
    Randel, William J.
    Jensen, Eric J.
    NATURE GEOSCIENCE, 2013, 6 (03) : 169 - 176
  • [44] Electrification in Hurricanes: Implications for Water Vapor in the Tropical Tropopause Layer
    Pittman, Jasna V.
    Chronis, Themis G.
    Robertson, Franklin R.
    Miller, Timothy L.
    HURRICANES AND CLIMATE CHANGE, 2009, : 21 - 34
  • [45] Transport of short-lived species into the Tropical Tropopause Layer
    Ashfold, M. J.
    Harris, N. R. P.
    Atlas, E. L.
    Manning, A. J.
    Pyle, J. A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (14) : 6309 - 6322
  • [46] Indian summer monsoon onset signatures on the tropical tropopause layer
    RavindraBabu, S.
    Ratnam, M. Venkat
    Basha, Ghouse
    Krishnamurthy, B. V.
    ATMOSPHERIC SCIENCE LETTERS, 2019, 20 (03):
  • [47] The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures
    Fu, Qiang
    Smith, Maxwell
    Yang, Qiong
    ATMOSPHERE, 2018, 9 (10)
  • [48] Longitudinal variability of water vapor and cirrus in the tropical tropopause layer
    Clark, HL
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D7) : 1 - 12
  • [49] Vertical Mixing and the Temperature and Wind Structure of the Tropical Tropopause Layer
    Flannaghan, Thomas J.
    Fueglistaler, Stephan
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (05) : 1609 - 1622
  • [50] Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection
    Fernandez, R. P.
    Salawitch, R. J.
    Kinnison, D. E.
    Lamarque, J. -F.
    Saiz-Lopez, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (24) : 13391 - 13410