Custom 3D-printed applicators for high dose-rate brachytherapy in skin cancer

被引:11
|
作者
Membrive Conejo, Ismael [1 ,2 ]
Pera Cegarra, Oscar [1 ,2 ]
Foro Arnalot, Palmira [1 ,2 ,3 ]
Reig Castillejo, Ana [1 ,2 ]
Rodriguez de Dios, Nuria [1 ,2 ,3 ]
Sanz Latiesas, Xavier [1 ,2 ,3 ]
Pujol Vallverdu, Ramon M. [2 ,4 ,5 ]
Quera Jordana, Jaume [1 ,2 ,3 ]
Fernandez-Velilla Cepria, Enric [1 ,2 ]
Algara Munoz, Victor [6 ]
Algara Lopez, Manuel [1 ,2 ,5 ]
机构
[1] Hosp Mar, Radiat Oncol Dept, Parc Salut Mar,Passeig Marftim 25, Barcelona 08003, Spain
[2] Inst Hosp Mar Investigac Med Barcelona, Barcelona, Spain
[3] Pompeu Fabra Univ, Barcelona, Spain
[4] Hosp Mar, Dermatol Dept, Parc Salut Mar, Barcelona, Spain
[5] Univ Autonoma Barcelona Barcelona, Barcelona, Spain
[6] Univ Politecn Catalunya Barcelona, Barcelona, Spain
关键词
3D print; Skin cancer; Plesiotherapy; Brachytherapy; BASAL-CELL; RECOMMENDATIONS; RADIOTHERAPY; IMIQUIMOD; THERAPY;
D O I
10.1016/j.brachy.2021.05.164
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSE: This paper describes the protocol for the development of 3D-printed custom applicators in treating skin carcinoma, the evaluation of the materials used, and the methods for segmentation and rendering of the applicators. MATERIAL AND METHODS: The segmentation and rendering process for the applicator had six phases: (i) determination of the volume of the lesion using a computed tomography (CT) scan; (ii) delineation of the patient surface, using the same CT images; (iii) creation of the applicator in the planner and segmentation of the mold; (iv) preliminary dosimetry and establishment of the route of the catheter from the brachytherapy unit; (v) creation of the 3D applicator using specialized software; and (vi) applicator printing. Following this process, the patient returned for a second CT to undergo the definitive dosimetry with the applicator in place. Radiation therapy was then administered. RESULTS: We made a total of 16 applicators. Only three applicators had to be remade, two due to an error in the infill and the other due to incorrect catheter geometry. In all cases, correct coverage of the planning target volume was achieved with the prescribed isodose. CONCLUSIONS: The creation of custom molds in plesiotherapy for skin cancer with 3D printing is feasible. Compared to manual methods, 3D printing increases precision in applicator geometry and optimization of the dosimetry. (c) 2021 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1257 / 1264
页数:8
相关论文
共 50 条
  • [1] Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy
    Jones, Emma-Louise
    Baldion, Anna Tonino
    Thomas, Christopher
    Burrows, Tom
    Byrne, Nick
    Newton, Victoria
    Aldridge, Sarah
    BRACHYTHERAPY, 2017, 16 (02) : 409 - 414
  • [2] Design of Custom, 3D-Printed Surface Brachytherapy Applicators
    Chytyk-Praznik, K.
    Oliver, P.
    Allan, J.
    Best, L.
    Robar, J.
    MEDICAL PHYSICS, 2020, 47 (06) : E737 - E737
  • [3] Customized 3D-printed molds for high dose-rate brachytherapy in facial skin cancer: First clinical experience
    Chatzikonstantinou, Georgios
    Diefenhardt, Markus
    Fleischmann, Maximilian
    Meissner, Markus
    Scherf, Christian
    Trommel, Martin
    Ramm, Ulla
    Roedel, Claus
    Tselis, Nikolaos
    Licher, Joerg
    JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, 2023, 21 (01): : 43 - 43
  • [4] 3D-printed applicators for high dose rate brachytherapy: Dosimetric assessment at different infill percentage
    Ricotti, Rosalinda
    Vavassori, Andrea
    Bazani, Alessia
    Ciardo, Delia
    Pansini, Floriana
    Spoto, Ruggero
    Sammarco, Vittorio
    Cattani, Federica
    Baroni, Guido
    Orecchia, Roberto
    Jereczek-Fossa, Barbara Alicja
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12): : 1698 - 1706
  • [5] Clinical implementation of custom 3D-printed applicators for gynaecological HDR brachytherapy
    Brown, Ryan
    Martland, Judith
    Ko, Florence
    Stevens, Mark
    Morgia, Marita
    Booth, Jeremy
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S258 - S260
  • [6] 3D Printed Surface Applicators for High Dose Rate Brachytherapy
    Clarke, Scott
    Yewondwossen, Mammo
    Robar, James
    MEDICAL PHYSICS, 2016, 43 (08) : 4934 - 4935
  • [7] Clinical outcomes of using 3D-printed applicators for high-dose-rate brachytherapy in gynecological malignancy
    Sittiwong, Wiwatchai
    Dankulchai, Pittaya
    Puangragsa, Utumporn
    Prasartseree, Tissana
    Tuntapakul, Pongpop
    Sathitwatthanawirot, Chanida
    Kittikornchaichan, Janiya
    Kongkum, Sansanee
    Piputpanukul, Niyada
    Rojanapan, Kantarat
    JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2024, 16 (06) : 428 - 436
  • [8] Characterization and Validation of 3D Printed High Dose Rate Brachytherapy Applicators
    Wiles, A.
    Pokhrel, S.
    Knewtson, T.
    Jia, Y.
    Goldbaum, D.
    Ballo, M.
    Izaguirre, E. W.
    MEDICAL PHYSICS, 2018, 45 (06) : E354 - E355
  • [9] Reproducibility and air gap pockets of 3D-printed brachytherapy applicator placement in high-dose-rate skin cancer
    Poltorak, Michal
    Banatkiewicz, Pawel
    Poltorak, Lukasz
    Sobolewski, Piotr
    Zimon, Damian
    Szwast, Maciej
    Walecka, Irena
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 123
  • [10] 3D-printed surface mould applicator for high-dose-rate brachytherapy
    Schumacher, Mark
    Lasso, Andras
    Cumming, Ian
    Rankin, Adam
    Falkson, Conrad B.
    Schreiner, L. John
    Joshi, Chandra
    Fichtinger, Gabor
    MEDICAL IMAGING 2015: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2015, 9415