Strong magnetic response of submicron Silicon particles in the infrared

被引:617
|
作者
Garcia-Etxarri, A. [1 ,2 ]
Gomez-Medina, R. [3 ]
Froufe-Perez, L. S. [3 ]
Lopez, C. [3 ]
Chantada, L. [4 ]
Scheffold, F. [4 ]
Aizpurua, J. [1 ,2 ]
Nieto-Vesperinas, M. [3 ]
Saenz, J. J. [1 ,2 ,5 ,6 ]
机构
[1] Ctr Fis Mat CSIC UPV EHU, Donostia San Sebastian 20018, Spain
[2] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[3] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain
[4] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[5] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[6] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain
来源
OPTICS EXPRESS | 2011年 / 19卷 / 06期
基金
瑞士国家科学基金会;
关键词
LIGHT; SCATTERING; FREQUENCY; ANTENNAS;
D O I
10.1364/OE.19.004815
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical media in these regimes. Here we analyze the dipolar electric and magnetic response of lossless dielectric spheres made of moderate permittivity materials. For low material refractive index (less than or similar to 3) there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with index of refraction similar to 3.5 and radius similar to 200nm present strong electric and magnetic dipolar resonances in telecom and near-infrared frequencies, (i.e. at wavelengths approximate to 1.2 - 2 mu m) without spectral overlap with quadrupolar and higher order resonances. The light scattered by these Si particles can then be perfectly described by dipolar electric and magnetic fields. (C) 2011 Optical Society of America
引用
收藏
页码:4815 / 4826
页数:12
相关论文
共 50 条
  • [21] Universal threshold for the steam laser cleaning of submicron spherical particles from silicon
    Mosbacher, M
    Dobler, V
    Boneberg, J
    Leiderer, P
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 70 (06): : 669 - 672
  • [22] Experimental confirmation of infrared magnetic response in a random silicon carbide micro-powder
    Wheeler, Mark S.
    Stewart Aitchison, J.
    Mojahedi, Mohammad
    Optics InfoBase Conference Papers, 2008,
  • [23] Nonlinear response of fine superparamagnetic particles to the sudden change of a strong uniform DC magnetic field
    Coffey, WT
    Kalmykov, YP
    Titov, SV
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 241 (2-3) : 400 - 414
  • [24] MOSSBAUER STUDY OF STRONG MAGNETIC INCLUSIONS IN SILICON
    GEVONDYAN, TA
    ERMOLAEV, AV
    SEREGIN, VT
    STRAKHOV, LP
    FIZIKA TVERDOGO TELA, 1988, 30 (08): : 2528 - 2530
  • [25] MARINE SUBMICRON PARTICLES
    WELLS, ML
    GOLDBERG, ED
    MARINE CHEMISTRY, 1992, 40 (1-2) : 5 - 18
  • [26] Fabrication of submicron titanium-alloy particles for biological response studies
    Yang, IH
    Kim, SY
    Rubash, HE
    Shanbhag, AS
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1999, 48 (03): : 220 - 223
  • [27] INFRARED PHOTODETECTORS WITH TAILORABLE RESPONSE DUE TO RESONANT PLASMON ABSORPTION IN EPITAXIAL SILICIDE PARTICLES EMBEDDED IN SILICON
    FATHAUER, RW
    DEJEWSKI, SM
    GEORGE, T
    JONES, EW
    KRABACH, TN
    KSENDZOV, A
    APPLIED PHYSICS LETTERS, 1993, 62 (15) : 1774 - 1776
  • [28] Strong Magnetic Response of Optical Nanofibers
    Atakaramians, Shaghik
    Miroshnichenko, Andrey E.
    Shadrivov, Ilya V.
    Mirzaei, Ali
    Monro, Tanya M.
    Kivshar, Yuri S.
    Afshar, Shahraam, V
    ACS PHOTONICS, 2016, 3 (06): : 972 - 978
  • [29] The transient signal response of submicron vertical silicon field effect transistors
    Crow, GC
    Abram, RA
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2001, 16 (04) : 250 - 254
  • [30] Influence of particle oxide coating on light scattering by submicron metal particles on silicon wafers
    Kim, JH
    Ehrman, SH
    Germer, TA
    APPLIED PHYSICS LETTERS, 2004, 84 (08) : 1278 - 1280