Analysis of a Monte Carlo boundary propagation method

被引:0
|
作者
Gunzburger, MD
Hiromoto, RE
Mundt, MO
机构
[1] UNIV TEXAS SAN ANTONIO, SAN ANTONIO, TX 78249 USA
[2] LOS ALAMOS NATL LAB, LOS ALAMOS, NM 87545 USA
关键词
Monte Carlo methods; boundary value problems;
D O I
10.1016/0898-1221(96)00006-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modified Monte Carlo technique, first developed in estimating a solution to Poisson's equation, is described and estimates of its computational complexities are derived. The method yields better estimates than the standard Monte Carlo approach by incorporating boundary information more efficiently and by the implicit reuse of random walk information gathered throughout the course of the computation. The new approach reduces the computational complexity of the length of a random walk by one order of magnitude as compared to a standard method described in many text books. Also, the number of walks necessary to achieve a desired accuracy is reduced.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [21] Monte Carlo Propagation of Spatial Coherence
    Prahl, Scott A.
    Duncan, Donald D.
    Fischer, David G.
    [J]. BIOMEDICAL APPLICATIONS OF LIGHT SCATTERING III, 2009, 7187
  • [22] All lepton propagation Monte Carlo
    Chirkin, D.
    Rhode, W.
    [J]. Proceedings of the 29th International Cosmic Ray Conference Vol 9: HE 2, 2005, : 93 - 96
  • [23] Solving boundary value problems with complex parameters by the Monte Carlo method
    Mikhailov, GA
    Menshchikov, BV
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (04) : 775 - 781
  • [24] GRAIN BOUNDARY MIGRATION IN THIN FILMS USING MONTE CARLO METHOD
    Di Prinzio, C. L.
    Achaval, P. I.
    Stoler, D.
    Aguirre Varela, G.
    [J]. ANALES AFA, 2020, 31 (01): : 7 - 12
  • [25] MONTE-CARLO METHOD FOR BIHARMONIC BOUNDARY-VALUE PROBLEMS
    GOPALSAMY, K
    AGGARWAL.BD
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (06): : 293 - 298
  • [26] Analysis of light propagation in adult head model by direct hybrid Monte Carlo-diffusion method
    Ogoshi, Y
    Hayashi, T
    Fukui, Y
    Okada, E
    [J]. IEEE EMBS APBME 2003, 2003, : 316 - 317
  • [27] Subsonic flow boundary conditions for the direct simulation Monte Carlo method
    Farbar, Erin
    Boyd, Iain D.
    [J]. COMPUTERS & FLUIDS, 2014, 102 : 99 - 110
  • [28] Monte Carlo method
    Volz, Sebastian
    [J]. MICROSCALE AND NANOSCALE HEAT TRANSFER, 2007, 107 : 133 - 154
  • [29] THE MONTE CARLO METHOD
    METROPOLIS, N
    ULAM, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1949, 44 (247) : 335 - 341
  • [30] Monte Carlo analysis of laser radiation propagation in multilayer biological materials
    Seteikin, AY
    [J]. OPTICS AND SPECTROSCOPY, 2005, 99 (04) : 659 - 662