Microstructure and properties of highly filled rubber/clay nanocomposites prepared by melt blending

被引:69
|
作者
Lu, Yong-Lai
Li, Zhao
Yu, Zhong-Zhen
Tian, Ming
Zhang, Li-Qun [1 ]
Mai, Yiu-Wing
机构
[1] Beijing Univ Chem Technol, Key Lab Beijing City Preparat & Proc Novel Polyme, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Minist Educ, Key Lab Nanomat, Beijing 100029, Peoples R China
[3] Univ Sydney, Ctr Adv Mat Technol, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
nanoclays; rubber; nano composites; mechanical properties; gas permeability;
D O I
10.1016/j.compscitech.2007.05.018
中图分类号
TB33 [复合材料];
学科分类号
摘要
A series of highly filled rubber/clay nanocomposites (RCNs) based on ethylene-propylene diene rubber (EPDM), styrene butadiene rubber (SBR) and epichlorohydrin rubber (ECO) were prepared by melt blending with traditional rubber processing technique. Wide-angle X-ray diffraction (WAXD) characterization shows that the highly filled RCNs (up to similar to 60 wt%) have intercalated silicate structures. TEM observations reveal that the dispersion homogeneity of clay layers improves with increasing content of organically modified clay (OMC). It was shown by dynamic mechanical thermal analysis (DMTA) for the first time that the melt-like thermal transition of alkyl chains of the surfactant of OMC still occurs in the intercalated OMC. Addition of large amount OMC to rubber greatly improves the modulus of material. Highly filled RCNs also possess outstanding gas barrier properties when compared to neat rubbers. (C) 2007 Published by Elsevier Ltd.
引用
收藏
页码:2903 / 2913
页数:11
相关论文
共 50 条
  • [31] Poly(butylene terephthalate)-clay nanocomposites prepared by melt intercalation: morphology and thermomechanical properties
    Chang, YW
    Kim, S
    Kyung, Y
    POLYMER INTERNATIONAL, 2005, 54 (02) : 348 - 353
  • [32] Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blending methods
    Dlamini, D. S.
    Mishra, S. B.
    Mishra, A. K.
    Mamba, B. B.
    JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (21) : 2211 - 2216
  • [33] Water transport properties of polyamide 6 based nanocomposites prepared by melt blending:: On the importance of the clay dispersion state on the water transport properties at high water activity
    Picard, E.
    Gerard, J. -F.
    Espuche, E.
    JOURNAL OF MEMBRANE SCIENCE, 2008, 313 (1-2) : 284 - 295
  • [34] Characterization of Poly(vinyl chloride)/Bentonite Nanocomposite Prepared via Melt Blending Method Nanocomposites via Melt Blending
    Karakus, Selcan
    Budinski-Simendic, Jaroslava
    Korugic-Karasz, Ljljiana
    Aroguz, Ayse Z.
    CONTEMPORARY SCIENCE OF POLYMERIC MATERIALS, 2010, 1061 : 103 - 113
  • [35] Microstructure and Properties of Polypropylene/Clay Nanocomposites
    Rezaiean, N.
    Ebadi-Dehaghani, H.
    Khonakdar, H. A.
    Jafary, P.
    Jafari, S. M. A.
    Ghorbani, R.
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2016, 55 (10): : 1022 - 1038
  • [36] Comparing styrene butadiene rubber-clay nanocomposites prepared by melt intercalation and latex-coagulation methods
    Salehi, M.
    Razzaghi-Kashani, M.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 126 (01) : 253 - 259
  • [37] PP/clay nanocomposites prepared by grafting-melt intercalation
    Liu, XH
    Wu, QJ
    POLYMER, 2001, 42 (25) : 10013 - 10019
  • [38] Structure and properties of nanocomposites prepared by directly melt blending ethylene-co-vinylacetate and natural montmorillonite
    Zou, Hua
    Ma, Qingqing
    Tian, Yan
    Wu, Shishan
    Shen, Jian
    POLYMER COMPOSITES, 2006, 27 (05) : 529 - 532
  • [39] Properties of Polycarbonate (PC)/Multi-Wall Carbon Nanotube (MWCNT) Nanocomposites Prepared by Melt Blending
    Maiti, Sandip
    Khatua, B. B.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (10) : 8613 - 8620
  • [40] Preparation and Dielectric Properties of Highly Filled Barium Titanate/ Fluorinated Silicone Rubber Nanocomposites
    Zhang Q.
    Chen R.
    Du F.
    Liu X.
    Li Y.
    Yang W.
    Zhou Y.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (02): : 17 - 23and31