Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions

被引:6
|
作者
Park, Yongseok [1 ]
Taylor, Jeremy M. G. [1 ]
Kalbfleisch, John D. [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Censored data; Constrained nonparametric maximum likelihood estimator; Kaplan-Meier estimator; Maximum likelihood estimator; Order restriction; CONFIDENCE-INTERVAL ESTIMATION; RANDOM-VARIABLES; DISTRIBUTIONS; CONSTRAINT; SUBJECT;
D O I
10.1093/biomet/ass006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [31] On the uniqueness of the maximum likelihood estimator
    Orme, CD
    Ruud, PA
    ECONOMICS LETTERS, 2002, 75 (02) : 209 - 217
  • [32] The density of the maximum likelihood estimator
    Hillier, G
    Armstrong, M
    ECONOMETRICA, 1999, 67 (06) : 1459 - 1470
  • [33] The Sherpa Maximum Likelihood Estimator
    Nguyen, D.
    Doe, S.
    Evans, I.
    Hain, R.
    Primini, F.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 517 - 520
  • [34] A semiparametric maximum likelihood estimator
    Ai, CR
    ECONOMETRICA, 1997, 65 (04) : 933 - 963
  • [35] Nonparametric Bayes Stochastically Ordered Latent Class Models
    Yang, Hongxia
    O'Brien, Sean
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 807 - 817
  • [36] Maximum likelihood estimator for cumulative incidence functions under proportionality constraint
    Geffray S.
    Guilloux A.
    Sankhya A, 2011, 73 (2): : 303 - 328
  • [37] Nonparametric AMOC changepoint tests for stochastically ordered alternatives
    Gurevich, Gregory
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (05) : 887 - 903
  • [38] On the estimation of stochastically ordered survival functions
    Rojo, J
    Ma, Z
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 55 (1-2) : 1 - 21
  • [39] On the Estimation of Stochastically Ordered Survival Functions
    Journal of Statistical Computation and Simulation, 55 (1-2):
  • [40] A nonparametric maximum likelihood estimator for the receiver operating characteristic curve area in the presence of verification bias
    Zhou, Xiao H.
    (52):