Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal-Insulator Transition in VO2

被引:23
|
作者
Cheng, Chun [1 ,2 ,3 ,4 ]
Fu, Deyi [1 ]
Liu, Kai [1 ,3 ]
Guo, Hua [3 ]
Xu, Shuigang [5 ]
Ryu, Sang-Gil [4 ]
Ho, Otto [1 ]
Zhou, Jian [1 ]
Fan, Wen [1 ]
Bao, Wei [1 ,3 ]
Salmeron, Miquel [1 ,3 ]
Wang, Ning [5 ]
Grigoropoulos, Costas P. [4 ]
Wu, Junqiao [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] South Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[5] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
来源
ADVANCED OPTICAL MATERIALS | 2015年 / 3卷 / 03期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
PHASE-TRANSITION; THERMAL-CONDUCTIVITY; ORGANIZATION; DOMAINS;
D O I
10.1002/adom.201400483
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A near-field powermeter that directly quantifies light absorption and heat transfer in single nanowires is demonstrated. The mechanism is based on the metal-insulator transition in single-crystal VO2 microbeams, where the domain wall exhibits distinct optical contrast between the two phases. The powermeter is contactless and optically readable, allowing quick determination of optical absorbance, thermal conductivity, and contact thermal resistance of single nanostructures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 50 条
  • [41] Microstructure scaling of metal-insulator transition properties of VO2 films
    Niang, K. M.
    Bai, G.
    Lu, H.
    Robertson, J.
    APPLIED PHYSICS LETTERS, 2021, 118 (12)
  • [42] Understanding the Nature of the Kinetic Process in a VO2 Metal-Insulator Transition
    Yao, Tao
    Zhang, Xiaodong
    Sun, Zhihu
    Liu, Shoujie
    Huang, Yuanyuan
    Xie, Yi
    Wu, Changzheng
    Yuan, Xun
    Zhang, Wenqing
    Wu, Ziyu
    Pan, Guoqiang
    Hu, Fengchun
    Wu, Lihui
    Liu, Qinghua
    Wei, Shiqiang
    PHYSICAL REVIEW LETTERS, 2010, 105 (22)
  • [43] Artificial afferent neurons based on the metal-insulator transition of VO2
    Chen, Jiayao
    Yin, Lei
    Wang, Yue
    Wang, Haolin
    Li, Dongke
    Yang, Deren
    Pi, Xiaodong
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (11)
  • [44] Magnetoresistance across metal-insulator transition in VO2 micro crystals
    Singh, Davinder
    Yadav, C. S.
    Viswanath, B.
    MATERIALS LETTERS, 2017, 196 : 248 - 251
  • [45] Resistance noise at the metal-insulator transition in thermochromic VO2 films
    Topalian, Zareh
    Li, Shu-Yi
    Niklasson, Gunnar A.
    Granqvist, Claes G.
    Kish, Laszlo B.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (02)
  • [46] Enhancing the metal-insulator transition in VO2 heterostructures with graphene interlayers
    Cao, Hui
    Yan, Xi
    Li, Yan
    Stan, Liliana
    Chen, Wei
    Guisinger, Nathan P.
    Zhou, Hua
    Fong, Dillon D.
    APPLIED PHYSICS LETTERS, 2022, 121 (08)
  • [47] Influence of Lattice Distortion on the Metal-Insulator Transition Temperature of VO2
    Lin T.
    Zhang Y.
    Cailiao Daobao/Materials Reports, 2020, 34 (03): : 06057 - 06061
  • [48] THz Metamaterials based on Metal-Insulator Transition of VO2 Patterns
    Kaltenecker, K. J.
    Leroy, J.
    Crunteanu, A.
    Humbert, G.
    Fischer, B. M.
    Walther, M.
    2014 39TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2014,
  • [49] Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film
    Cocker, T. L.
    Titova, L. V.
    Fourmaux, S.
    Bandulet, H-C.
    Brassard, D.
    Kieffer, J-C.
    El Khakani, M. A.
    Hegmann, F. A.
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [50] Competitive coexistence of ferromagnetism and metal-insulator transition of VO2 nanoparticles
    Hatano, Tsuyoshi
    Fukawa, Akihiro
    Yamamoto, Hiroki
    Akiba, Keiichirou
    Demura, Satoshi
    Takase, Kouichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (04)