Application of variational reduced-density-matrix theory to the potential energy surfaces of the nitrogen and carbon dirners

被引:32
|
作者
Gidofalvi, G
Mazziotti, DA
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 122卷 / 19期
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1901565
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The acceleration of the variational two-electron reduced-density-matrix (2-RDM) method, using a new first-order algorithm [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)], has shown its usefulness in the accurate description of potential energy surfaces in nontrivial basis sets. Here we apply the first-order 2-RDM method to the potential energy surfaces of the nitrogen and carbon dimers in polarized valence double-zeta basis sets for which benchmark full-configuration-interaction calculations exist. In a wave function formalism accurately stretching the triple bond of the nitrogen dimer requires at least six-particle excitations from the Hartree-Fock reference. Furthermore, cleaving the double bond of C-2 should produce a "non-Morse"-Iike potential curve because the ground state near equilibrium (X (1)Sigma(+)(g)) has an avoided crossing with the second excited state (B', and a level crossing with the first excited state (B (1)Delta(g)). Because the 2-RDM method variationally optimizes the energy over correlated 2-RDMs on the two-electron space without parametrization of the many-electron wave function, it captures multireference correlations that are difficult to describe with approximate wave functions. The 2-RDM method yields for N-2 a potential energy surface with features and spectroscopic constants that are more accurate than those from single-reference methods and similar in accuracy to multireference techniques, and it describes the non-Morse-like behavior of C-2 which is not captured by single-reference methods. (c) 2005 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条