Well-posedness of non-autonomous semilinear systems

被引:5
|
作者
Schmid, Jochen [1 ,2 ]
Dashkovskiy, Sergey [1 ]
Jacob, Birgit [3 ]
Laasri, Hafida [3 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[2] Fraunhofer Inst Ind Math ITWM, D-67663 Kaiserslautern, Germany
[3] Univ Wuppertal, Sch Math & Nat Sci, D-42119 Wuppertal, Germany
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 16期
关键词
Well-posedness; global stability; non-autonomous systems; nonlinear systems; infinite-dimensional systems; generalized solutions and outputs;
D O I
10.1016/j.ifacol.2019.11.781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present well-posedness - along with global stability - results for non-autonomous semilinear input-output systems, the central assumption being that the considered system is scattering-passive. We consider both systems with distributed control and observation and systems with boundary control and observation. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 220
页数:5
相关论文
共 50 条
  • [41] The well-posedness for semilinear time fractional wave equations on RN
    Zhou, Yong
    He, Jia Wei
    Alsaedi, Ahmed
    Ahmad, Bashir
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2981 - 3003
  • [42] ON WELL-POSEDNESS OF SEMILINEAR STOCHASTIC EVOLUTION EQUATIONS ON Lp SPACES
    Marinelli, Carlo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) : 2111 - 2143
  • [43] Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn
    Ambrosetti, Antonio
    Cerami, Giovanna
    Ruiz, David
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) : 2816 - 2845
  • [44] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wei-ke WANG
    Yu-tong WANG
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 386 - 400
  • [45] Hs-global well-posedness for semilinear wave equations
    Miao, CX
    Zhang, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (02) : 645 - 666
  • [46] Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions
    Fu, Xianlong
    Rong, Huang
    AUTOMATION AND REMOTE CONTROL, 2016, 77 (03) : 428 - 442
  • [47] Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions
    Xianlong Fu
    Huang Rong
    Automation and Remote Control, 2016, 77 : 428 - 442
  • [48] WELL-POSEDNESS FOR THE COUPLED BBM SYSTEMS
    Chen, Hongqiu
    Haidau, Cristina A.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (03): : 890 - 914
  • [49] WELL-POSEDNESS OF SYSTEMS OF EQUILIBRIUM PROBLEMS
    Hu, Rong
    Fang, Ya-Ping
    Huang, Nan-Jing
    Wong, Mu-Ming
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (06): : 2435 - 2446
  • [50] Well-posedness of boundary control systems
    Cheng, A
    Morris, K
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) : 1244 - 1265