Explicit difference schemes for solving stiff systems of ODEs and PDEs with complex spectrum

被引:10
|
作者
Lebedev, VI [1 ]
机构
[1] Russian Res Ctr, Kurachatov Inst, Inst Numer Math, Moscow 123182, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1515/rnam.1998.13.2.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a stable explicit method of first-order accuracy with time-variable steps for solving stiff systems of ODEs and nonstationary PDEs with complex spectrum belonging to a domain B. We investigate the conditions on, in case of their fulfilment the average step is order maximal. We propose algorithmically simple realizations of these conditions by the DUMKA code for the special class of domains B whose boundaries are the level lines of the Chebyshev polynomials of a composite argument.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [21] Schemes of (m, k)-Type for Solving Differential-Algebraic and Stiff Systems
    A. I. Levykin
    A. E. Novikov
    E. A. Novikov
    Numerical Analysis and Applications, 2020, 13 : 34 - 44
  • [22] Schemes of (m, k)-Type for Solving Differential-Algebraic and Stiff Systems
    Levykin, A. I.
    Novikov, A. E.
    Novikov, E. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2020, 13 (01) : 34 - 44
  • [23] Accelerated implicit-explicit Runge-Kutta schemes for locally stiff systems
    Vermeire, Brian C.
    Nasab, Siavash Hedayati
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [24] Class of explicit difference schemes for solving two-dimensional heat conduction equation
    Jin, Chengri
    Liu, Jiaqi
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 1995, 27 (05): : 9 - 12
  • [25] Difference schemes for systems of second order nonlinear ODEs on a semi-infinite interval
    Krol, M.
    Kutniv, M. V.
    Pazdriy, O. I.
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 33 - 50
  • [26] DIFFERENCE SCHEMES OF SOLVING CAUCHY PROBLEM FOR HYPERBOLIC SYMMETRIC SYSTEMS
    ANUCHINA, NN
    DOKLADY AKADEMII NAUK SSSR, 1964, 154 (02): : 247 - &
  • [27] Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy
    Qasim, Uswah
    Ali, Zulifqar
    Ahmad, Fayyaz
    Serra-Capizzano, Stefano
    Ullah, Malik Zaka
    Asma, Mir
    ALGORITHMS, 2016, 9 (01)
  • [28] On the extended one-step schemes for solving stiff systems of ordinary differential equations
    Hu, CL
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 70 (04) : 773 - 788
  • [29] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS WITH STIFF RELAXATION AND APPLICATIONS
    Boscarino, Sebastiano
    Russo, Giovanni
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 61 - 80
  • [30] Third-order Paired Explicit Runge-Kutta schemes for stiff systems of equations
    Nasab, Siavash Hedayati
    Vermeire, Brian C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 468