Plant microbial fuel cells (PMFCs) are an innovative, promising and environmentally friendly way of renewable bioelectricity generation. The method of PMFCs consists in electrode systems installation into substrate with developing plants through the collecting of bioelectricity, produced by the rhizosphere electroactive microorganisms as a result of consuming excreted via the roots products of photosynthesis and also feeding by plant decomposition products and substrate compounds. This paper focuses on the role of microbiome and plants as the main drivers of electrobiotechnology in the performance of PMFCs to form approaches their improving. The brief analysis of species diversity of electroactive microorganisms, such as model exoelectrogens, pathogens and extremals, cable bacteria and eukaryotes was carried out. Microbial community of PMFCs, including anode microorganisms, biocathode and microorganisms of interelectrode space was considered. The contribution of syntrophic and competitive microorganisms in the electrogenesis was discussed. The paper highlights diversity of PMFCs based on more than ninety species of plants such as wetland and arid plants, salt-tolerant and frost resistant plants, invasive weeds and food crops, ornamental garden and indoor plants, local and widespread plant species. The role of photosynthesis, root excretion and hydrolysis of dead plant residues on which PMFC efficiency depends were evaluated. The application of PMFC being a source of green energy which could also be used for remediation of wastewater and polluted water, soil and air, biosensing, food and feed production, green roofs arrangement, outdoor and indoor landscaping, powering of electrical devices and elimination of greenhouse gases was presented.