Application of biocathode in microbial fuel cells: cell performance and microbial community

被引:0
|
作者
Guo-Wei Chen
Soo-Jung Choi
Tae-Ho Lee
Gil-Young Lee
Jae-Hwan Cha
Chang-Won Kim
机构
[1] Pusan National University,Department of Environmental Engineering
[2] Hefei University of Technology,School of Civil Engineering
来源
关键词
Microbial fuel cells; Biocathode; Cell performance; Microbial community;
D O I
暂无
中图分类号
学科分类号
摘要
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Ω, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Ω, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.
引用
收藏
页码:379 / 388
页数:9
相关论文
共 50 条
  • [1] Application of biocathode in microbial fuel cells: cell performance and microbial community
    Chen, Guo-Wei
    Choi, Soo-Jung
    Lee, Tae-Ho
    Lee, Gil-Young
    Cha, Jae-Hwan
    Kim, Chang-Won
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 79 (03) : 379 - 388
  • [2] Application of conductive polymers in biocathode of microbial fuel cells and microbial community
    Li, Chao
    Ding, Lili
    Cui, Hao
    Zhang, Libin
    Xu, Ke
    Ren, Hongqiang
    [J]. BIORESOURCE TECHNOLOGY, 2012, 116 : 459 - 465
  • [3] Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations
    Guo, Jing
    Cheng, Jianping
    Li, Beibei
    Wang, Jiaquan
    Chu, Pengpeng
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 833 : 433 - 440
  • [4] Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells
    Guo-Wei Chen
    Soo-Jung Choi
    Jae-Hwan Cha
    Tae-Ho Lee
    Chang-Won Kim
    [J]. Korean Journal of Chemical Engineering, 2010, 27 : 1513 - 1520
  • [5] Microbial community analysis in biocathode microbial fuel cells packed with different materials
    Sun, Yanmei
    Wei, Jincheng
    Liang, Peng
    Huang, Xia
    [J]. AMB EXPRESS, 2012, 2 : 1 - 8
  • [6] Microbial community analysis in biocathode microbial fuel cells packed with different materials
    Yanmei Sun
    Jincheng Wei
    Peng Liang
    Xia Huang
    [J]. AMB Express, 2
  • [7] Enhancement of nitrate reduction in microbial fuel cells by acclimating biocathode potential: Performance, microbial community, and mechanism
    Yao, Jiachao
    Qi, Jiayi
    Sun, Jiamo
    Qian, Xiaofei
    Chen, Jun
    [J]. BIORESOURCE TECHNOLOGY, 2024, 398
  • [8] The application and effectiveness evaluation of microbial separator in biocathode microbial fuel cell (MFC)
    Li, Chao
    Liang, Dan-Dan
    Tian, Yan
    Yadav, Ravi Shanker
    He, Wei-Hua
    Feng, Yu-Jie
    [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2021, 41 (04): : 1655 - 1662
  • [9] Improvement of sediment microbial fuel cell performance by application of sun light and biocathode
    Najafgholi, Zahra
    Rahimnejad, Mostafa
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (01) : 154 - 158
  • [10] Improvement of sediment microbial fuel cell performance by application of sun light and biocathode
    Zahra Najafgholi
    Mostafa Rahimnejad
    [J]. Korean Journal of Chemical Engineering, 2016, 33 : 154 - 158