Identification of Daboia siamensis venome using integrated multi-omics data

被引:7
|
作者
Saethang, Thammakorn [1 ]
Somparn, Poorichaya [2 ,3 ]
Payungporn, Sunchai [4 ]
Sriswasdi, Sira [5 ,6 ]
Yee, Khin Than [7 ]
Hodge, Kenneth [2 ]
Knepper, Mark A. [8 ]
Chanhome, Lawan [9 ]
Khow, Orawan [9 ]
Chaiyabutr, Narongsak [9 ]
Sitprija, Visith [9 ]
Pisitkun, Trairak [2 ,8 ]
机构
[1] Kasetsart Univ, Dept Comp Sci, Fac Sci, Bangkok 10900, Thailand
[2] Chulalongkorn Univ, Ctr Excellence Syst Biol, Fac Med, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Dept Microbiol, Fac Med, Translat Res Inflammat & Immunol Res Unit TRIRU, Bangkok 10330, Thailand
[4] Chulalongkorn Univ, Res Unit Syst Microbiol, Fac Med, Bangkok 10330, Thailand
[5] Chulalongkorn Univ, Ctr Excellence Computat Mol Biol, Fac Med, Bangkok 10330, Thailand
[6] Chulalongkorn Univ, Res Affairs, Fac Med, Bangkok 10330, Thailand
[7] Minist Hlth, Chem Toxicol Res Div, Dept Med Res, Yangon 11191, Myanmar
[8] NHLBI, Epithelial Syst Biol Lab, NIH, Bldg 10, Bethesda, MD 20892 USA
[9] Thai Red Cross Soc, Queen Saovabha Mem Inst, Bangkok 10330, Thailand
基金
美国国家卫生研究院;
关键词
GENOME REVEALS; RUSSELII VENOM; SNAKE; EVOLUTION; SEQUENCE; ADAPTATION; TOXINS; GENES; INDIA;
D O I
10.1038/s41598-022-17300-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Snakebite, classified by World Health Organization as a neglected tropical disease, causes more than 100,000 deaths and 2 million injuries per year. Currently, available antivenoms do not bind with strong specificity to target toxins, which means that severe complications can still occur despite treatment. Moreover, the cost of antivenom is expensive. Knowledge of venom compositions is fundamental for producing a specific antivenom that has high effectiveness, low side effects, and ease of manufacture. With advances in mass spectrometry techniques, venom proteomes can now be analyzed in great depth at high efficiency. However, these techniques require genomic and transcriptomic data for interpreting mass spectrometry data. This study aims to establish and incorporate genomics, transcriptomics, and proteomics data to study venomics of a venomous snake, Daboia siamensis. Multiple proteins that have not been reported as venom components of this snake such as hyaluronidase-1, phospholipase B, and waprin were discovered. Thus, multi-omics data are advantageous for venomics studies. These findings will be valuable not only for antivenom production but also for the development of novel therapeutics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Integrated Multi-Omics Landscape of Liver Metastases
    Yang, Shuai
    Qian, Ling
    Li, Zhixuan
    Li, Ye
    Bai, Jian
    Zheng, Bo
    Chen, Kun
    Qiu, Xinyao
    Cai, Guoxiang
    Wang, Shan
    Huang, Haiyan
    Wu, Jianmin
    Zhu, Yanjing
    Zhangyang, Qianwen
    Feng, Lanyun
    Wu, Tong
    Wu, Rui
    Yang, Airong
    Wang, Kaiting
    Wang, Ruiru
    Zhang, Yani
    Zhao, Yan
    Wang, Wenwen
    Bao, Jinxia
    Shen, Siyun
    Hu, Ji
    Wu, Xuan
    Zhou, Tao
    Meng, Zhiqiang
    Liu, Weiwei
    Wang, Hongyang
    Wang, Peng
    Chen, Lei
    GASTROENTEROLOGY, 2023, 164 (03) : 407 - 423.e17
  • [22] Deep learning-based ovarian cancer subtypes identification using multi-omics data
    Long-Yi Guo
    Ai-Hua Wu
    Yong-xia Wang
    Li-ping Zhang
    Hua Chai
    Xue-Fang Liang
    BioData Mining, 13
  • [23] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [24] Deep learning-based ovarian cancer subtypes identification using multi-omics data
    Guo, Long-Yi
    Wu, Ai-Hua
    Wang, Yong-xia
    Zhang, Li-ping
    Chai, Hua
    Liang, Xue-Fang
    BIODATA MINING, 2020, 13 (01)
  • [25] A roadmap for multi-omics data integration using deep learning
    Kang, Mingon
    Ko, Euiseong
    Mersha, Tesfaye B.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [26] The National Microbiome Data Collaborative Data Portal: an integrated multi-omics microbiome data resource
    Eloe-Fadrosh, Emiley A.
    Ahmed, Faiza
    Anubhav
    Babinski, Michal
    Baumes, Jeffrey
    Borkum, Mark
    Bramer, Lisa
    Canon, Shane
    Christianson, Danielle S.
    Corilo, Yuri E.
    Davenport, Karen W.
    Davis, Brandon
    Drake, Meghan
    Duncan, William D.
    Flynn, Mark C.
    Hays, David
    Hu, Bin
    Huntemann, Marcel
    Kelliher, Julia
    Lebedeva, Sofya
    Li, Po-E
    Lipton, Mary
    Lo, Chien-Chi
    Martin, Stanton
    Millard, David
    Miller, Kayd
    Miller, Mark A.
    Piehowski, Paul
    Jackson, Elais Player
    Purvine, Samuel
    Reddy, T. B. K.
    Richardson, Rachel
    Rudolph, Marisa
    Sarrafan, Setareh
    Shakya, Migun
    Smith, Montana
    Stratton, Kelly
    Sundaramurthi, Jagadish Chandrabose
    Vangay, Pajau
    Winston, Donald
    Wood-Charlson, Elisha M.
    Xu, Yan
    Chain, Patrick S. G.
    McCue, Lee Ann
    Mans, Douglas
    Mungall, Christopher J.
    Mouncey, Nigel J.
    Fagnan, Kjiersten
    NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D828 - D836
  • [27] Network analysis with multi-omics data using graphical LASSO
    Park, Jaehyun
    Won, Sungho
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 509 - 509
  • [28] Integrated multi-omics analysis of ovarian cancer using variational autoencoders
    Muta Tah Hira
    M. A. Razzaque
    Claudio Angione
    James Scrivens
    Saladin Sawan
    Mosharraf Sarker
    Scientific Reports, 11
  • [29] Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis
    Zhu, Jie
    Kong, Weikaixin
    Huang, Liting
    Bi, Suzhen
    Jiao, Xuelong
    Zhu, Sujie
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [30] MONet: cancer driver gene identification algorithm based on integrated analysis of multi-omics data and network models
    Ren, Yingzan
    Zhang, Tiantian
    Liu, Jian
    Ma, Fubin
    Chen, Jiaxin
    Li, Ponian
    Xiao, Guodong
    Sun, Chuanqi
    Zhang, Yusen
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2025, 250