Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2

被引:13
|
作者
Dwivedy, Abhisek [1 ]
Mariadasse, Richard [2 ]
Ahmad, Mohammed [1 ]
Chakraborty, Sayan [1 ]
Kar, Deepsikha [1 ]
Tiwari, Satish [1 ]
Bhattacharyya, Sankar [3 ]
Sonar, Sudipta [3 ]
Mani, Shailendra [3 ]
Tailor, Prafullakumar [1 ]
Majumdar, Tanmay [1 ]
Jeyakanthan, Jeyaraman [2 ]
Biswal, Bichitra Kumar [1 ]
机构
[1] Natl Inst Immunol, New Delhi, India
[2] Alagappa Univ, Dept Bioinformat, Karaikkudi, Tamil Nadu, India
[3] Translat Hlth Sci & Technol Inst, Faridabad, India
关键词
PROTEIN-KINASE INHIBITORS; INTRINSIC ATPASE ACTIVITY; CONSERVED DOMAIN; CATALYTIC DOMAIN; STRUCTURAL BASIS; REPLICATION; RIBAVIRIN; BINDING; SUPERFAMILY; RECOGNITION;
D O I
10.1371/journal.pcbi.1009384
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Author summary The on-going coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is significantly affecting the world health. Unfortunately, over 180 million cases of COVID-19 resulting in nearly 4 million deaths have been reported till June, 2021. In this study, using a combination of bioinformatics, biochemical and mass spectrometry methods, we show that the Nidovirus RdRp associated Nucleotidyl transferase (NiRAN) domain of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 exhibits a kinase like activity. Additionally, we also show that few broad spectrum anti-cancer and anti-microbial drugs dampen this kinase like activity. Of note, Sorafenib, an FDA approved anti-cancer kinase inhibiting drug significantly reduces the SARS-CoV-2 load in cell lines. Our study suggests that NiRAN domain of the SARS-CoV-2 RdRp is indispensible for the successful viral life cycle and shows that abolishing this enzymatic function of RdRp by small molecule inhibitors may open novel avenues for COVID-19 therapeutics.</p> Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.</p>
引用
收藏
页数:27
相关论文
共 50 条
  • [1] RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target
    Wang, Yanyan
    Anirudhan, Varada
    Du, Ruikun
    Cui, Qinghua
    Rong, Lijun
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (01) : 300 - 310
  • [2] Identification and characterization of mutations in the SARS-CoV-2 RNA-dependent RNA polymerase as a promising antiviral therapeutic target
    Niti Yashvardhini
    Deepak Kumar Jha
    Saurav Bhattacharya
    [J]. Archives of Microbiology, 2021, 203 : 5463 - 5473
  • [3] SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19
    Vicenti, Ilaria
    Zazzi, Maurizio
    Saladini, Francesco
    [J]. EXPERT OPINION ON THERAPEUTIC PATENTS, 2021, 31 (04) : 325 - 337
  • [4] Identification and characterization of mutations in the SARS-CoV-2 RNA-dependent RNA polymerase as a promising antiviral therapeutic target
    Yashvardhini, Niti
    Jha, Deepak Kumar
    Bhattacharya, Saurav
    [J]. ARCHIVES OF MICROBIOLOGY, 2021, 203 (09) : 5463 - 5473
  • [5] In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase
    Kapoor, Shreya
    Singh, Anurag
    Gupta, Vandana
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 129
  • [6] Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2
    Pokhrel, Rudramani
    Chapagain, Prem
    Siltberg-Liberles, Jessica
    [J]. JOURNAL OF MEDICAL MICROBIOLOGY, 2020, 69 (06) : 864 - 873
  • [7] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Aftab, Syed Ovais
    Ghouri, Muhammad Zubair
    Masood, Muhammad Umer
    Haider, Zeshan
    Khan, Zulqurnain
    Ahmad, Aftab
    Munawar, Nayla
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [8] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Syed Ovais Aftab
    Muhammad Zubair Ghouri
    Muhammad Umer Masood
    Zeshan Haider
    Zulqurnain Khan
    Aftab Ahmad
    Nayla Munawar
    [J]. Journal of Translational Medicine, 18
  • [9] Remdesivir analogs against SARS-CoV-2 RNA-dependent RNA polymerase
    Ahmed, Sinthyia
    Mahtarin, Rumana
    Islam, Md Shamiul
    Das, Susmita
    Al Mamun, Abdulla
    Ahmed, Sayeda Samina
    Ali, Md Ackas
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (21): : 11111 - 11124
  • [10] In silico identification of promising inhibitor against RNA-dependent RNA polymerase target of SARS-CoV-2
    Singh, Pushpendra
    Tripathi, Manish Kumar
    Yasir, Mohammad
    Khare, Ruchi
    Shrivastava, Rahul
    [J]. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS, 2021, 10 (03) : 131 - 140