Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data

被引:39
|
作者
Wang, Robin [1 ,2 ,3 ]
Jiao, Zhicheng [2 ,3 ]
Li Yang [4 ]
Choi, Ji Whae [5 ,6 ]
Xiong, Zeng [1 ]
Halsey, Kasey [5 ,6 ]
Tran, Thi My Linh [5 ,6 ]
Pan, Ian [5 ]
Collins, Scott A. [5 ]
Feng, Xue [7 ]
Wu, Jing [8 ]
Chang, Ken [9 ]
Shi, Lin-Bo [10 ]
Yang, Shuai [1 ]
Yu, Qi-Zhi [11 ]
Liu, Jie [12 ]
Fu, Fei-Xian [13 ]
Jiang, Xiao-Long [14 ]
Wang, Dong-Cui [1 ]
Zhu, Li-Ping [1 ]
Yi, Xiao-Ping [1 ]
Healey, Terrance T. [5 ]
Zeng, Qiu-Hua [15 ]
Liu, Tao [16 ]
Hu, Ping-Feng [17 ]
Huang, Raymond Y. [18 ]
Li, Yi-Hui [19 ]
Sebro, Ronnie A. [2 ,3 ]
Zhang, Paul J. L. [2 ,3 ]
Wang, Jianxin [20 ]
Atalay, Michael K. [5 ]
Liao, Wei-Hua [1 ]
Fan, Yong [2 ,3 ]
Bai, Harrison X. [5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Peoples R China
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Ctr Biomed Image Computat & Analyt, Philadelphia, PA 19104 USA
[4] Cent South Univ, Xiangya Hosp 2, Dept Neurol, Changsha, Peoples R China
[5] Rhode Isl Hosp, Dept Diagnost Imaging, Providence, RI 02903 USA
[6] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[7] Carina Med, Carina, Australia
[8] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha, Peoples R China
[9] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[10] Yongzhou Cent Hosp, Dept Radiol, Yongzhou, Peoples R China
[11] First Hosp Changsha, Dept Radiol, Changsha, Peoples R China
[12] Changde Second Peoples Hosp, Dept Radiol, Changde, Peoples R China
[13] Yiyang City Ctr Hosp, Dept Radiol, Yiyang, Peoples R China
[14] Univ South China, Affiliated Nan Hua Hosp, Dept Radiol, Hengyang, Peoples R China
[15] Loudi Cent Hosp, Dept Radiol, Loudi, Peoples R China
[16] Brown Univ, Sch Publ Hlth, Providence, RI 02912 USA
[17] Chenzhou Second Peoples Hosp, Dept Radiol, Chenzhou, Peoples R China
[18] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[19] Zhuzhou Cent Hosp, Dept Radiol, Zhuzhou, Peoples R China
[20] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
基金
美国国家卫生研究院;
关键词
Coronavirus infections; Helical CT; Disease progression; Deep learning; DISEASE;
D O I
10.1007/s00330-021-08049-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. Methods An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. Results A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). Conclusions Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 50 条
  • [21] Artificial intelligence to codify lung CT in Covid-19 patients
    Maria Paola Belfiore
    Fabrizio Urraro
    Roberta Grassi
    Giuliana Giacobbe
    Gianluigi Patelli
    Salvatore Cappabianca
    Alfonso Reginelli
    La radiologia medica, 2020, 125 : 500 - 504
  • [22] Artificial intelligence to codify lung CT in Covid-19 patients
    Belfiore, Maria Paola
    Urraro, Fabrizio
    Grassi, Roberta
    Giacobbe, Giuliana
    Patelli, Gianluigi
    Cappabianca, Salvatore
    Reginelli, Alfonso
    RADIOLOGIA MEDICA, 2020, 125 (05): : 500 - 504
  • [23] Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19
    Shi, Feng
    Wang, Jun
    Shi, Jun
    Wu, Ziyan
    Wang, Qian
    Tang, Zhenyu
    He, Kelei
    Shi, Yinghuan
    Shen, Dinggang
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 : 4 - 15
  • [24] Towards Managing Covid-19 Using Artificial Intelligence and Big Data Analytics
    Aziz, Azwa Abdul
    Madi, Elissa Nadia
    Pa, Nik Nurul Nadia Nik
    Makhtar, Mokhairi
    IMPACT OF ARTIFICIAL INTELLIGENCE, AND THE FOURTH INDUSTRIAL REVOLUTION ON BUSINESS SUCCESS, 2023, 485 : 147 - 164
  • [25] Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence
    Lessmann, Nikolas
    Sanchez, Clara, I
    Beenen, Ludo
    Boulogne, Luuk H.
    Brink, Monique
    Calli, Erdi
    Charbonnier, Jean-Paul
    Dofferhoff, Ton
    van Everdingen, Wouter M.
    Gerke, Paul K.
    Geurts, Bram
    Gietema, Hester A.
    Groeneveld, Miriam
    van Harten, Louis
    Hendrix, Nils
    Hendrix, Ward
    Huisman, Henkjan J.
    Isgum, Ivana
    Jacobs, Colin
    Kluge, Ruben
    Kok, Michel
    Krdzalic, Jasenko
    Lassen-Schmidt, Bianca
    van Leeuwen, Kicky
    Meakin, James
    Overkamp, Mike
    Vellinga, Tjalco van Rees
    van Rikxoort, Eva M.
    Samperna, Riccardo
    Schaefer-Prokop, Cornelia
    Schalekamp, Steven
    Scholten, Ernst Th
    Sital, Cheryl
    Stoeger, J. Lauran
    Teuwen, Jonas
    Venkadesh, Kiran Vaidhya
    de Vente, Coen
    Vermaat, Marieke
    Xie, Weiyi
    de Wilde, Bram
    Prokop, Mathias
    van Ginneken, Bram
    RADIOLOGY, 2021, 298 (01) : E18 - E28
  • [26] Artificial Intelligence of COVID-19 Imaging: A Hammer in Search of a Nail
    Summers, Ronald M.
    RADIOLOGY, 2021, 298 (03) : E162 - E164
  • [27] Clinical longitudinal evaluation of COVID-19 patients and prediction of organ-specific recovery using artificial intelligence
    Wang, Winston T.
    Zhang, Charlotte L.
    Wei, Kang
    Sang, Ye
    Shen, Jun
    Wang, Guangyu
    Lozano, Alexander X.
    PRECISION CLINICAL MEDICINE, 2021, 4 (01) : 62 - 69
  • [28] Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets
    Stephanie A. Harmon
    Thomas H. Sanford
    Sheng Xu
    Evrim B. Turkbey
    Holger Roth
    Ziyue Xu
    Dong Yang
    Andriy Myronenko
    Victoria Anderson
    Amel Amalou
    Maxime Blain
    Michael Kassin
    Dilara Long
    Nicole Varble
    Stephanie M. Walker
    Ulas Bagci
    Anna Maria Ierardi
    Elvira Stellato
    Guido Giovanni Plensich
    Giuseppe Franceschelli
    Cristiano Girlando
    Giovanni Irmici
    Dominic Labella
    Dima Hammoud
    Ashkan Malayeri
    Elizabeth Jones
    Ronald M. Summers
    Peter L. Choyke
    Daguang Xu
    Mona Flores
    Kaku Tamura
    Hirofumi Obinata
    Hitoshi Mori
    Francesca Patella
    Maurizio Cariati
    Gianpaolo Carrafiello
    Peng An
    Bradford J. Wood
    Baris Turkbey
    Nature Communications, 11
  • [29] Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets
    Harmon, Stephanie A.
    Sanford, Thomas H.
    Xu, Sheng
    Turkbey, Evrim B.
    Roth, Holger
    Xu, Ziyue
    Yang, Dong
    Myronenko, Andriy
    Anderson, Victoria
    Amalou, Amel
    Blain, Maxime
    Kassin, Michael
    Long, Dilara
    Varble, Nicole
    Walker, Stephanie M.
    Bagci, Ulas
    Ierardi, Anna Maria
    Stellato, Elvira
    Plensich, Guido Giovanni
    Franceschelli, Giuseppe
    Girlando, Cristiano
    Irmici, Giovanni
    Labella, Dominic
    Hammoud, Dima
    Malayeri, Ashkan
    Jones, Elizabeth
    Summers, Ronald M.
    Choyke, Peter L.
    Xu, Daguang
    Flores, Mona
    Tamura, Kaku
    Obinata, Hirofumi
    Mori, Hitoshi
    Patella, Francesca
    Cariati, Maurizio
    Carrafiello, Gianpaolo
    An, Peng
    Wood, Bradford J.
    Turkbey, Baris
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] The value of longitudinal clinical data and paired CT scans in predicting the deterioration of COVID-19 revealed by an artificial intelligence system
    Han, Xiaoyang
    Yu, Ziqi
    Zhuo, Yaoyao
    Zhao, Botao
    Ren, Yan
    Lamm, Lorenz
    Xue, Xiangyang
    Feng, Jianfeng
    Marr, Carsten
    Shan, Fei
    Peng, Tingying
    Zhang, Xiao-Yong
    ISCIENCE, 2022, 25 (05)