NONCOMPACTNESS OF FOURIER CONVOLUTION OPERATORS ON BANACH FUNCTION SPACES

被引:5
|
作者
Fernandes, Claudio A. [1 ]
Karlovich, Alexei Y. [1 ]
Karlovich, Yuri, I [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
[2] Univ Autonoma Estado Morelos, Inst Invest Ciencias Basicas & Aplicadas, Ctr Invest Ciencias, AV Univ 1001, Cuernavaca 62209, Morelos, Mexico
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2019年 / 10卷 / 04期
关键词
Fourier convolution operator; compactness; Banach function space; Hardy-Littlewood maximal operator; Lebesgue space with Muckenhoupt weight; WEIGHTED NORM INEQUALITIES; MAXIMAL OPERATOR;
D O I
10.1215/20088752-2019-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(R) be a separable Banach function space such that the Hardy-Littlewood maximal operator M is bounded on X(R) and on its associate space X' (R). Suppose that a is a Fourier multiplier on the space X(R) We show that the Fourier convolution operator W-0(a) with symbol a is compact on the space X(R) if and only if a = 0. This result implies that nontrivial Fourier convolution operators on Lebesgue spaces with Muckenhoupt weights are never compact.
引用
收藏
页码:553 / 561
页数:9
相关论文
共 50 条
  • [41] HOLOMORPHIC SUPERPOSITION OPERATORS BETWEEN BANACH FUNCTION SPACES
    Boyd, Christopher
    Rueda, Pilar
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) : 186 - 197
  • [42] COMPACTNESS CONDITIONS FOR INTEGRAL OPERATORS IN BANACH FUNCTION SPACES
    GROBLER, JJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1970, 73 (04): : 287 - &
  • [43] Regularity of Continuous Linear Operators on Banach Function Spaces
    JIANG Nian-sheng
    2.Department of Applied Mathematics
    数学季刊, 2004, (01) : 51 - 56
  • [44] Lattice Lipschitz superposition operators on Banach function spaces
    Arnau, Roger
    Calabuig, Jose M.
    Erdogan, Ezgi
    Perez, Enrique A. Sanchez
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [45] Factorization Theorems for Multiplication Operators on Banach Function Spaces
    E. A. Sánchez Pérez
    Integral Equations and Operator Theory, 2014, 80 : 117 - 135
  • [46] Summability Properties for Multiplication Operators on Banach Function Spaces
    Delgado, O.
    Sanchez Perez, E. A.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (02) : 197 - 214
  • [47] Summability Properties for Multiplication Operators on Banach Function Spaces
    O. Delgado
    E. A. Sánchez Pérez
    Integral Equations and Operator Theory, 2010, 66 : 197 - 214
  • [48] CHAOTIC AND HYPERCYCLIC OPERATORS ON SOLID BANACH FUNCTION SPACES
    Chen, C-C
    Tabatabaie, S. M.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 83 - 98
  • [49] SOME PROPERTIES ON AVERAGING OPERATORS IN BANACH FUNCTION SPACES
    KORVIN, AD
    ROBERTS, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A493 - A493
  • [50] Factorization Theorems for Multiplication Operators on Banach Function Spaces
    Sanchez Perez, E. A.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 117 - 135