REMARKS ON THE STRONG MAXIMUM PRINCIPLE FOR NONLOCAL OPERATORS

被引:0
|
作者
Coville, Jerome [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Nonlocal diffusion operators; maximum principles; Geometric condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study the existence of a strong maximum principle for the nonlocal operator M[u](x) := integral(G) J(g)u(x * g(-1))d mu(g) - u(x), where G is a topological group acting continuously on a Hausdorff space X and u is an element of C(X). First we investigate the general situation and derive a pre-maximum principle. Then we restrict our analysis to the case of homogeneous spaces (i.e., X = G/H). For such Hausdorff spaces, depending on the topology, we give a condition on J such that a strong maximum principle holds for M. We also revisit the classical case of the convolution operator (i.e. G - (R-n, +), X = R-n, d mu = dy).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A note on the strong maximum principle
    Bertsch, Michiel
    Smarrazzo, Flavia
    Tesei, Alberto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 4356 - 4375
  • [22] The strong maximum principle revisited
    Pucci, P
    Serrin, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (01) : 1 - 66
  • [23] Some remarks on the weak maximum principle
    Rigoli, M
    Salvatori, M
    Vignati, M
    REVISTA MATEMATICA IBEROAMERICANA, 2005, 21 (02) : 459 - 481
  • [24] SUPPLEMENTARY REMARKS ON SHARP MAXIMUM PRINCIPLE
    REDHEFFE.R
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 22 (10) : 985 - 987
  • [25] THE STRONG MAXIMUM PRINCIPLE AND THE HARNACK INEQUALITY FOR A CLASS OF HYPOELLIPTIC NON-HORMANDER OPERATORS
    Battaglia, Erika
    Biagi, Stefano
    Bonfiglioli, Andrea
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) : 589 - 631
  • [26] Dirichlet operators and the positive maximum principle
    Rene L. Schilling
    Integral Equations and Operator Theory, 2001, 41 : 74 - 92
  • [27] Dirichlet operators and the positive maximum principle
    Schilling, RL
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) : 74 - 92
  • [28] Maximum principle for elliptic operators and applications
    Tahraoui, R
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (06): : 815 - 870
  • [29] A note on the strong maximum principle and the compact support principle
    Felmer, Patricio
    Montenegro, Marcelo
    Quaas, Alexander
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 39 - 49
  • [30] Maximum principles for nonlocal parabolic Waldenfels operators
    Huang, Qiao
    Duan, Jinqiao
    Wu, Jiang-Lun
    BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)