Stabilizing mechanism of single-atom catalysts on a defective carbon surface

被引:41
|
作者
Wu, Lianping [1 ,2 ]
Hu, Shuling [2 ]
Yu, Wenshan [2 ]
Shen, Shengping [2 ]
Li, Teng [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Xi An Jiao Tong Univ, Sch Aerosp Engn, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
关键词
NANOPARTICLES; OXYGEN;
D O I
10.1038/s41524-020-0292-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom (SA) catalysts represent the ultimate limit of atom use efficiency for catalysis. Promising experimental progress in synthesizing SA catalysts aside, the atomic-scale transformation mechanism from metal nanoparticles (NPs) to metal SAs and the stabilization mechanism of SA catalysts at high temperature remain elusive. Through systematic molecular dynamics simulations, for the first time, we reveal the atomic-scale mechanisms associated with the transformation of a metal NP into an array of stable SAs on a defective carbon surface at a high temperature, using Au as a model material. Simulations reveal the pivotal role of defects in the carbon surface in trapping and stabilizing the Au-SAs at high temperatures, which well explain previous experimental observations. Furthermore, reactive simulations demonstrate that the thermally stable Au-SAs exhibit much better catalyst activity than Au-NPs for the methane oxidation at high temperatures, in which the substantially reduced energy barriers for oxidation reaction steps are the key. Findings in this study offer mechanistic and quantitative guidance for material selection and optimal synthesis conditions to stabilize metal SA catalysts at high temperatures.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Single-atom Automobile Exhaust Catalysts
    Lu, Yubing
    Zhang, Zihao
    Lin, Fan
    Wang, Huamin
    Wang, Yong
    CHEMNANOMAT, 2020, 6 (12) : 1659 - 1682
  • [32] Synergistic Effect of Surface-Terminated Oxygen Vacancy and Single-Atom Catalysts on Defective MXenes for Efficient Nitrogen Fixation
    Tang, Shaobin
    Liu, Tianyong
    Dang, Qian
    Zhou, Xunhui
    Li, Xiaokang
    Yang, Tongtong
    Luo, Yi
    Sharman, Edward
    Jiang, Jun
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (13): : 5051 - 5058
  • [33] Theoretical insights into single-atom catalysts
    Li, Lulu
    Chang, Xin
    Lin, Xiaoyun
    Zhao, Zhi-Jian
    Gong, Jinlong
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) : 8156 - 8178
  • [34] Single-atom catalysts gained a toehold
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (49) : 29 - 29
  • [35] Biomedical Applications of Single-atom Catalysts
    Yuan, Zhongwen
    He, Lizhen
    Chen, Tianfeng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2690 - 2709
  • [36] Transforming Energy with Single-Atom Catalysts
    Ding, Shipeng
    Hulsey, Max J.
    Perez-Ramirez, Javier
    Yang, Ning
    JOULE, 2019, 3 (12) : 2897 - 2929
  • [37] On the Tracks to "Smart" Single-Atom Catalysts
    Melchionna, Michele
    Fornasiero, Paolo
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (03) : 2275 - 2290
  • [38] Theoretical insights into single-atom catalysts
    Kaitlin McCardle
    Nature Computational Science, 2022, 2 : 138 - 138
  • [39] Magnesium single-atom catalysts with superbasicity
    Xiang-Bin Shao
    Yao Nian
    Song-Song Peng
    Guo-Song Zhang
    Meng-Xuan Gu
    You Han
    Xiao-Qin Liu
    Lin-Bing Sun
    Science China Chemistry, 2023, 66 : 1737 - 1743
  • [40] Single-atom catalysts for electrochemical applications
    Ren, Shan
    Cao, Xi
    Jiang, Zinan
    Yu, Zijuan
    Zhang, Tingting
    Wei, Shaohui
    Fan, Qikui
    Yang, Jian
    Mao, Junjie
    Wang, Dingsheng
    CHEMICAL COMMUNICATIONS, 2023, 59 (18) : 2560 - 2570