Uniqueness of entropy solution for general anisotropic convection-diffusion problems

被引:5
|
作者
Ouedraogo, Adama [1 ]
Maliki, Mohamed [2 ]
Zabsonre, Jean De Dieu [1 ]
机构
[1] Univ Polytech Bobo Dioulasso, Bobo Dioulasso 01, Burkina Faso
[2] Univ Hassan 2, EDP & Anal Numer, Mohammadia 20650, Morocco
关键词
Degenerate parabolic-hyperbolic equations; entropy solution; Kato's Inequality; anisotropic diffusion; non-Lipschitz flux; conservation law;
D O I
10.4171/PM/1910
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is an attempt to develop the uniqueness theory of entropy solution for the Cauchy problem associated to a general non-isotropic nonlinear strongly degenerate parabolic-hyperbolic equation. Our aim is to extend, at the same time, results of [1] and [11]. The novelty in this paper is the fact that we are dealing with general anisotropic diffusion problems, not necessarily with Lipschitz convection-diffusion flux functions in the whole space. Moreover, the source term depends on the unknown function of the problem. Under an abstract lemma and an additional assumption, we ensure the comparison principle which leads us to the uniqueness. In unbounded domains without Lipschitz condition on the convection and diffusion flux functions, this assumption seems to be optimal to establish uniqueness (cf. [1], [3], [14]).
引用
收藏
页码:141 / 158
页数:18
相关论文
共 50 条
  • [21] On the solution of convection-diffusion boundary value problems using equidistributed grids
    Budd, CJ
    Koomullil, GP
    Stuart, AM
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (02): : 591 - 618
  • [22] Meshless techniques for convection-diffusion problems
    Liu, GR
    Gu, YT
    Computational Mechanics, Proceedings, 2004, : 432 - 437
  • [23] Analytical and approximate solution of two-dimensional convection-diffusion problems
    Gunerhan, Hatira
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 73 - 77
  • [24] A meshless method for convection-diffusion problems
    Zerroukat, M
    ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER V, 1998, : 403 - 414
  • [25] Robust discretizations of convection-diffusion problems
    Roos, HG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 511 - 512
  • [26] On the integral transform solution of convection-diffusion problems within unbounded domain
    Almeida, AR
    Cotta, RM
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (05): : 821 - 832
  • [27] A VARIATIONAL FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS
    ORTIZ, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1985, 23 (07) : 717 - 731
  • [28] Schwarz methods for convection-diffusion problems
    MacMullen, H
    O'Riordan, E
    Shishkin, GI
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 544 - 551
  • [29] Modified streamline diffusion schemes for convection-diffusion problems
    Shih, YT
    Elman, HC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 174 (1-2) : 137 - 151
  • [30] Discretization of anisotropic convection-diffusion equations, convective M-matrices and their iterative solution
    Rose, DJ
    Shao, H
    Henriquez, CS
    VLSI DESIGN, 2000, 10 (04) : 485 - 529