Multiple-input ghost imaging via sparsity constraints

被引:21
|
作者
Gong, Wenlin [1 ,2 ]
Han, Shensheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Quantum Opt, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Ctr Cold Atom Phys CAS, Shanghai 201800, Peoples R China
关键词
THERMAL LIGHT;
D O I
10.1364/JOSAA.29.001571
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Usually the test detector of a standard ghost imaging scheme is a bucket detector; here the test detector in the scheme of multiple-input ghost imaging via sparsity constraints (MI-GISC) we proposed is characterized by some sparse-array single-pixel detectors, and the propagation process between the object plane and the test detection plane is also considered. Combining ghost imaging with the target's sparsity constraints, the theory and reconstruction of MI-GISC are investigated. The property and differences between MI-GISC and compressive ghost imaging (CGI) are studied theoretically and backed up by numerical simulations. MI-GISC can be applied in a remote imaging system with a small receiving numerical aperture, improving the reconstruction's quality of the target. (C) 2012 Optical Society of America
引用
收藏
页码:1571 / 1579
页数:9
相关论文
共 50 条
  • [21] Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning
    Ma, Shuang
    Hu, Chenyu
    Wang, Chenglong
    Liu, Zhentao
    Han, Shensheng
    OPTICS COMMUNICATIONS, 2019, 448 : 89 - 92
  • [22] Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device
    Chen, Jie
    Gong, Wenlin
    Han, Shensheng
    PHYSICS LETTERS A, 2013, 377 (31-33) : 1844 - 1847
  • [23] Joint sparsity-driven three-dimensional imaging method for multiple-input multiple-output radar with sparse antenna array
    Hu, Xiaowei
    Tong, Ningning
    Song, Baojun
    Ding, Shanshan
    Zhao, Xiaoru
    IET RADAR SONAR AND NAVIGATION, 2017, 11 (05): : 709 - 720
  • [24] Three-dimensional ghost imaging lidar via sparsity constraint
    Wenlin Gong
    Chengqiang Zhao
    Hong Yu
    Mingliang Chen
    Wendong Xu
    Shensheng Han
    Scientific Reports, 6
  • [25] Three-dimensional ghost imaging lidar via sparsity constraint
    Gong, Wenlin
    Zhao, Chengqiang
    Yu, Hong
    Chen, Mingliang
    Xu, Wendong
    Han, Shensheng
    SCIENTIFIC REPORTS, 2016, 6
  • [26] IDENTIFICATION OF MULTIPLE-INPUT MULTIPLE-OUTPUT CHANNELS UNDER LINEAR SIDE CONSTRAINTS
    Lee, Dae Gwan
    Pfander, Goetz E.
    Pohl, Volker
    Zhou, Weiqi
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3889 - 3893
  • [27] MIONET: LEARNING MULTIPLE-INPUT OPERATORS VIA TENSOR PRODUCT
    Jin, Pengzhan
    Meng, Shuai
    Lu, Lu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (06): : A3490 - A3514
  • [28] Distance accuracy evaluation of airborne ghost image via sparsity constraints LiDAR system
    Zhang, Huijing
    Zhou, Mei
    Hu, Jian
    Wu, Haohao
    Chen, Jiuying
    Teng, Geer
    Zhang, Dandan
    Li, Chuanrong
    Tang, Lingli
    QUANTUM OPTICS AND PHOTON COUNTING, 2019, 11027
  • [29] A Comparison between Multiple-Input Multiple-Output and Multiple-Input Single-Output Radar Configurations for Through-the-Wall Imaging Applications
    Pisa, Stefano
    Cicchetti, Renato
    Piuzzi, Emanuele
    Testa, Orlandino
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2022, 2022
  • [30] High-Resolution Multiple-Input Multiple-Ouput FLGPR Imaging
    Lim, Deoksu
    Xu, Luzhou
    Gianelli, Chris
    Li, Jian
    Nguyen, Lam
    Anderson, John M. M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 689 - 693