EULER EQUATIONS ON A SEMI-DIRECT PRODUCT OF THE DIFFEOMORPHISMS GROUP BY ITSELF

被引:11
|
作者
Escher, Joachim [1 ]
Ivanov, Rossen [2 ]
Kolev, Boris [3 ,4 ]
机构
[1] Leibniz Univ Hannover, Inst Appl Math, D-30167 Hannover, Germany
[2] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
[3] Univ Aix Marseille 1, F-13453 Marseille 13, France
[4] CNRS, LATP, F-13453 Marseille 13, France
来源
JOURNAL OF GEOMETRIC MECHANICS | 2011年 / 3卷 / 03期
基金
爱尔兰科学基金会;
关键词
Euler equation; integrable systems; peakons; diffeomorphism group of the circle; SHALLOW-WATER EQUATION; CAMASSA-HOLM EQUATION; GEOMETRIC APPROACH; BREAKING WAVES; GEODESIC-FLOW; CIRCLE; INTEGRABILITY; SYSTEMS; LIE;
D O I
10.3934/jgm.2011.3.313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The geodesic equations of a class of right invariant metrics on the semi-direct product Diff(S(1))(S)Diff (S(1)) are studied. The equations are explicitly described, they have the form of a system of coupled equations of Camassa-Holm type and possess singular (peakon) solutions. Their integrability is further investigated, however no compatible bi-Hamiltonian structures on the corresponding dual Lie algebra (Vect(S(1))(S)Vect(S(1)))* are found.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [11] Easy quantum groups and quantum subgroups of a semi-direct product quantum group
    Raum, Sven
    Weber, Moritz
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) : 1261 - 1293
  • [12] Covering a semi-direct product and intersective polynomials
    Paul D. Lee
    Blair K. Spearman
    Qiduan Yang
    Manuscripta Mathematica, 2016, 150 : 521 - 531
  • [13] REDUCTION OF RIGHT REGULAR REPRESENTATION OF SEMI-DIRECT PRODUCT OF LOCALLY COMPACT GROUP AND ABELIAN GROUP
    PIARD, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (11): : 880 - &
  • [14] DIRECT OR SEMI-DIRECT
    不详
    NATURE-PHYSICAL SCIENCE, 1971, 232 (35): : 178 - &
  • [15] Wigner functions for a class of semi-direct product groups
    Krasowska, AE
    Ali, ST
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : 2801 - 2820
  • [16] LEFT HILBERT ALGEBRA ASSOCIATED TO A SEMI-DIRECT PRODUCT
    ROUSSEAU, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (NOV) : 411 - 418
  • [17] The C*-algebra of the semi-direct product K x A
    Regeiba, Hedi
    Ludwig, Jean
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (04): : 915 - 934
  • [18] An Imprimitivity Theorem for Representations of a Semi-direct Product Hypergroup
    Heyer, Herbert
    Kawakami, Satoshi
    JOURNAL OF LIE THEORY, 2014, 24 (01) : 159 - 178
  • [19] The semi-direct product of Poisson G-spaces
    Marshall, I
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [20] THE ABSOLUTE GALOIS GROUP OF A RATIONAL-FUNCTION FIELD IN CHARACTERISTIC ZERO IS A SEMI-DIRECT PRODUCT
    VANDENDRIES, L
    RIBENBOIM, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (03): : 313 - 315