Euler equation;
integrable systems;
peakons;
diffeomorphism group of the circle;
SHALLOW-WATER EQUATION;
CAMASSA-HOLM EQUATION;
GEOMETRIC APPROACH;
BREAKING WAVES;
GEODESIC-FLOW;
CIRCLE;
INTEGRABILITY;
SYSTEMS;
LIE;
D O I:
10.3934/jgm.2011.3.313
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The geodesic equations of a class of right invariant metrics on the semi-direct product Diff(S(1))(S)Diff (S(1)) are studied. The equations are explicitly described, they have the form of a system of coupled equations of Camassa-Holm type and possess singular (peakon) solutions. Their integrability is further investigated, however no compatible bi-Hamiltonian structures on the corresponding dual Lie algebra (Vect(S(1))(S)Vect(S(1)))* are found.
机构:
Univ British Columbia Okanagan, Dept Math & Stat, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Dept Math & Stat, Kelowna, BC V1V 1V7, Canada
Lee, Paul D.
Spearman, Blair K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia Okanagan, Dept Math & Stat, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Dept Math & Stat, Kelowna, BC V1V 1V7, Canada
Spearman, Blair K.
Yang, Qiduan
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia Okanagan, Dept Math & Stat, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Dept Math & Stat, Kelowna, BC V1V 1V7, Canada