Cross entropy approximation of structured Gaussian covariance matrices

被引:7
|
作者
Liou, Cheng-Yuan [1 ]
Musicus, Bruce R. [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10764, Taiwan
关键词
array beamforming; eigenvector methods; factor analysis; generalized principle component analysis; Kullback information measure; minimum cross entropy (CE); oblique transformation; stochastic estimation; structured covariance;
D O I
10.1109/TSP.2008.917878
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We apply two variations of the principle of minimum cross entropy (the Kullback information measure) to fit parameterized probability density models to observed data densities. For an array beamforming problem with P incident narrowband point sources, N > P sensors, and colored noise, both approaches yield eigenvector fitting methods similar to that of the MUSIC algorithm and of the oblique transformation in factor analysis. Furthermore, the corresponding cross entropies (CE) are related to the MDL model order selection criterion.
引用
收藏
页码:3362 / 3367
页数:6
相关论文
共 50 条
  • [22] Toeplitz covariance matrices and the von neumann relative entropy
    Georgiou, TT
    [J]. CONTROL AND MODELING OF COMPLEX SYSTEMS: CYBERNETICS IN THE 21ST CENTURY: FESTSCHRIFT IN HONOR OF HIDENORI KIMURA ON THE OCCASION OF THE 60TH BIRTHDAY, 2003, : 23 - 29
  • [23] On the calculation of entropy from covariance matrices of the atomic fluctuations
    Andricioaei, I
    Karplus, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14): : 6289 - 6292
  • [24] Total Variation Approximation of Random Orthogonal Matrices by Gaussian Matrices
    Kathryn Stewart
    [J]. Journal of Theoretical Probability, 2020, 33 : 1111 - 1143
  • [25] Total Variation Approximation of Random Orthogonal Matrices by Gaussian Matrices
    Stewart, Kathryn
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (02) : 1111 - 1143
  • [26] Fast low-rank approximation for covariance matrices
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    [J]. 2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 181 - 184
  • [27] Gaussian variational approximation with sparse precision matrices
    Linda S. L. Tan
    David J. Nott
    [J]. Statistics and Computing, 2018, 28 : 259 - 275
  • [28] Gaussian variational approximation with sparse precision matrices
    Tan, Linda S. L.
    Nott, David J.
    [J]. STATISTICS AND COMPUTING, 2018, 28 (02) : 259 - 275
  • [29] Spectrum Sensing of Signals with Structured Covariance Matrices Using Covariance Matching Estimation Techniques
    Axell, Erik
    Larsson, Erik G.
    [J]. 2011 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2011), 2011,
  • [30] Gaussian cosimulation: Modelling of the cross-covariance
    Oliver, DS
    [J]. MATHEMATICAL GEOLOGY, 2003, 35 (06): : 681 - 698