Cross entropy approximation of structured Gaussian covariance matrices

被引:7
|
作者
Liou, Cheng-Yuan [1 ]
Musicus, Bruce R. [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10764, Taiwan
关键词
array beamforming; eigenvector methods; factor analysis; generalized principle component analysis; Kullback information measure; minimum cross entropy (CE); oblique transformation; stochastic estimation; structured covariance;
D O I
10.1109/TSP.2008.917878
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We apply two variations of the principle of minimum cross entropy (the Kullback information measure) to fit parameterized probability density models to observed data densities. For an array beamforming problem with P incident narrowband point sources, N > P sensors, and colored noise, both approaches yield eigenvector fitting methods similar to that of the MUSIC algorithm and of the oblique transformation in factor analysis. Furthermore, the corresponding cross entropies (CE) are related to the MDL model order selection criterion.
引用
收藏
页码:3362 / 3367
页数:6
相关论文
共 50 条
  • [1] Averaged Adaptive Cross Approximation for Structured Matrices
    Blackburn, Jordon N.
    Adams, Robert J.
    Young, John C.
    [J]. 2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [2] Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices
    Said, Salem
    Hajri, Hatem
    Bombrun, Lionel
    Vemuri, Baba C.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 752 - 772
  • [3] On the estimation of structured covariance matrices
    Zorzi, Mattia
    Ferrante, Augusto
    [J]. AUTOMATICA, 2012, 48 (09) : 2145 - 2151
  • [4] ESTIMATION OF STRUCTURED COVARIANCE MATRICES
    BURG, JP
    LUENBERGER, DG
    WENGER, DL
    [J]. PROCEEDINGS OF THE IEEE, 1982, 70 (09) : 963 - 974
  • [5] Robust estimation of structured covariance matrices
    [J]. Williams, Douglas B., 1600, (41):
  • [6] ROBUST ESTIMATION OF STRUCTURED COVARIANCE MATRICES
    WILLIAMS, DB
    JOHNSON, DH
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (09) : 2891 - 2906
  • [7] Separable Covariance Matrices and Kronecker Approximation
    Velu, Raja
    Herman, Kris
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1019 - 1029
  • [8] Gaussian fluctuations in complex sample covariance matrices
    Su, Zhonggen
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 1284 - 1320
  • [9] ESTIMATION OF STRUCTURED COVARIANCE MATRICES FOR TOMOSAR FOCUSING
    Martin-del-Campo-Becerra, Gustavo Daniel
    Torres-Garcia, Eduardo
    Nannini, Matteo
    Reigber, Andreas
    Torres-Roman, Deni Librado
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7937 - 7940
  • [10] Approximation of Covariance Matrices based on Matching Accuracy
    Rupp, Martin
    Blagojevic, Boris
    Knoll, Christian
    Zapf, Marc Patrick
    Zhang, Weimin
    Sawodny, Oliver
    [J]. 2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 691 - 696