The abc-theorem, Davenports inequality and elliptic surfaces

被引:3
|
作者
Shioda, Tetsuji [1 ]
机构
[1] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
关键词
abc-theorem; elliptic surface;
D O I
10.3792/pjaa.84.51
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the application of the abc-theorem and Davenport's inequality to elliptic surfaces over the projective line P-1, with special attention to the case of equality in the abc-theorem. Some existence theorem and the finiteness results will be given for certain type of elliptic surfaces.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [31] An ABC inequality for Mahler’s measure
    Jeffrey D. Vaaler
    Monatshefte für Mathematik, 2008, 154 : 323 - 343
  • [32] An inequality for polynomials with elliptic majorant
    Nikolov, G
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (04): : 315 - 325
  • [33] AN INEQUALITY FOR COMPLETE ELLIPTIC INTEGRALS
    ANDERSON, GD
    DUREN, P
    VAMANAMURTHY, MK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (01) : 257 - 259
  • [34] The theorem of iterates for elliptic and non-elliptic operators
    Furdos, Stefan
    Schindl, Gerhard
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)
  • [35] A Comparison Theorem for an Elliptic Operator
    Zhongmin Qian
    Potential Analysis, 1998, 8 : 137 - 142
  • [36] CHAPLYGIN THEOREM FOR ELLIPTIC EQUATIONS
    TETEREV, LG
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (05): : 1024 - 1026
  • [37] A uniqueness theorem for an elliptic equation
    Snider, Katherine
    International Journal of Applied Mathematics and Statistics, 2010, 16 (M10): : 101 - 104
  • [38] An elliptic analogue of a theorem of Hecke
    Murty, M. Ram
    Vatwani, Akshaa
    RAMANUJAN JOURNAL, 2016, 41 (1-3): : 171 - 182
  • [39] A comparison theorem for an elliptic operator
    Qian, ZM
    POTENTIAL ANALYSIS, 1998, 8 (02) : 137 - 142
  • [40] An elliptic second main theorem
    Duval, Julien
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (03) : 751 - 765