On a discrete composition of the fractional integral and Caputo derivative

被引:0
|
作者
Plociniczak, Lukasz [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Fractional integral; Caputo derivative; Euler-Maclaurin formula;
D O I
10.1016/j.cnsns.2021.106234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a discrete analogue for the composition of the fractional integral and Caputo derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evaluation of the discrete sums with the use of the Euler-Maclaurin summation formula. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Incomplete Caputo fractional derivative operators
    Mehmet Ali Özarslan
    Ceren Ustaoglu
    Advances in Difference Equations, 2018
  • [22] Fractional Telegraph Equation with the Caputo Derivative
    Ashurov, Ravshan
    Saparbayev, Rajapboy
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [23] Caputo fractional derivative of α-fractal spline
    Priyanka, T. M. C.
    Gowrisankar, A.
    Prasad, M. Guru Prem
    Liang, Yongshun
    Cao, Jinde
    NUMERICAL ALGORITHMS, 2024,
  • [24] Unexpected behavior of Caputo fractional derivative
    Bazaglia Kuroda, Lucas Kenjy
    Gomes, Arianne Vellasco
    Tavoni, Robinson
    de Arruda Mancera, Paulo Fernando
    Varalta, Najla
    Camargo, Rubens de Figueiredo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1173 - 1183
  • [25] Initialization issues of the Caputo fractional derivative
    Achar, B. N. Narahari
    Lorenzo, Carl F.
    Hartley, Tom T.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 1449 - 1456
  • [26] NEW INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS OF THE SECOND SENSE VIA THE CAPUTO FRACTIONAL DERIVATIVE AND THE CAPUTO-FABRIZIO INTEGRAL OPERATOR
    Kemali, Serap
    Tinaztepe, Gultekin
    Isik, Ilknur Yesilce
    Evcan, Sinem Sezer
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (04) : 1177 - 1188
  • [27] Controllability of fractional dynamical systems with ψ-Caputo fractional derivative
    Selvam, A. Panneer
    Vellappandi, M.
    Govindaraj, V
    PHYSICA SCRIPTA, 2023, 98 (02)
  • [28] Fractional viscoelastic models with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7835 - 7846
  • [29] Fractional boundary value problem with ψ-Caputo fractional derivative
    Abdo, Mohammed S.
    Panchal, Satish K.
    Saeed, Abdulkafi M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [30] Caputo generalized ψ-fractional integral inequalities
    Anastassiou, George A.
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (01) : 107 - 120