On a discrete composition of the fractional integral and Caputo derivative

被引:0
|
作者
Plociniczak, Lukasz [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Fractional integral; Caputo derivative; Euler-Maclaurin formula;
D O I
10.1016/j.cnsns.2021.106234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a discrete analogue for the composition of the fractional integral and Caputo derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evaluation of the discrete sums with the use of the Euler-Maclaurin summation formula. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A new fractional integral associated with the Caputo–Fabrizio fractional derivative
    M. Moumen Bekkouche
    H. Guebbai
    M. Kurulay
    S. Benmahmoud
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1277 - 1288
  • [2] Three Kinds of Discrete Formulae for the Caputo Fractional Derivative
    Dong, Zhengnan
    Fan, Enyu
    Shen, Ao
    Su, Yuhao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (04) : 1446 - 1468
  • [3] Fractional integral problems for fractional differential equations via Caputo derivative
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    Advances in Difference Equations, 2014
  • [4] Three Kinds of Discrete Formulae for the Caputo Fractional Derivative
    Zhengnan Dong
    Enyu Fan
    Ao Shen
    Yuhao Su
    Communications on Applied Mathematics and Computation, 2023, 5 : 1446 - 1468
  • [5] Fractional integral problems for fractional differential equations via Caputo derivative
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    ADVANCES IN DIFFERENCE EQUATIONS, 2014, : 1 - 17
  • [6] A new fractional integral associated with the Caputo-Fabrizio fractional derivative
    Moumen Bekkouche, M.
    Guebbai, H.
    Kurulay, M.
    Benmahmoud, S.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1277 - 1288
  • [7] Caputo-type fractional derivative of a hypergeometric integral operator
    Rao, Alka
    Garg, Mridula
    Kalla, S. L.
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2010, 37 (1A): : 15 - 29
  • [8] Fractional Integral Inequalities and Their Applications to Degenerate Differential Equations with the Caputo Fractional Derivative
    A. N. Artyushin
    Siberian Mathematical Journal, 2020, 61 : 208 - 221
  • [9] Fractional Integral Inequalities and Their Applications to Degenerate Differential Equations with the Caputo Fractional Derivative
    Artyushin, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) : 208 - 221
  • [10] Nonlinear Integral Inequalities Involving Tempered ?-Hilfer Fractional Integral and Fractional Equations with Tempered ?-Caputo Fractional Derivative
    Medved', Milan
    Pospisil, Michal
    Brestovanska, Eva
    FRACTAL AND FRACTIONAL, 2023, 7 (08)