Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images

被引:79
|
作者
Ren, Yibin [1 ,2 ]
Li, Xiaofeng [1 ,2 ]
Yang, Xiaofeng [3 ,4 ]
Xu, Huan [5 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
[2] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[4] Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China
[5] Jiangsu Ocean Univ, Sch Geomat & Marine Informat, Lianyungang 222005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Sea ice; Radar polarimetry; Feature extraction; Decoding; Oceans; Kernel; Image segmentation; Dual-attention; sea ice and open water classification; synthetic aperture radar (SAR) image; U-Net; DRIVEN; SYSTEM;
D O I
10.1109/LGRS.2021.3058049
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This study develops a deep learning (DL) model to classify the sea ice and open water from synthetic aperture radar (SAR) images. We use the U-Net, a well-known fully convolutional network (FCN) for pixel-level segmentation, as the model backbone. We employ a DL-based feature extracting model, ResNet-34, as the encoder of the U-Net. To achieve high accuracy classifications, we integrate the dual-attention mechanism into the original U-Net to improve the feature representations, forming a dual-attention U-Net model (DAU-Net). The SAR images are obtained from Sentinel-1A. The dual-polarized information and the incident angle of SAR images are model inputs. We used 15 dual-polarized images acquired near the Bering Sea to train the model and employ the other three images to test the model. Experiments show that the DAU-Net could achieve pixel-level classification; the dual-attention mechanism can improve the classification accuracy. Compared with the original U-Net, DAU-Net improves the intersection over union (IoU) by 7.48.% points, 0.96.% points, and 0.83.% points on three test images. Compared with the recently published model DenseNetFCN, the three improvement IoU values of DAU-Net are 3.04.% points, 2.53.% points, and 2.26.% points, respectively.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Uncertainty-Incorporated Ice and Open Water Detection on Dual-Polarized SAR Sea Ice Imagery
    Chen, Xinwei
    Scott, K. Andrea
    Xu, Linlin
    Jiang, Mingzhe
    Fang, Yuan
    Clausi, David A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] Automatic Supraglacial Lake Extraction in Greenland Using Sentinel-1 SAR Images and Attention-Based U-Net
    Jiang, Di
    Li, Xinwu
    Zhang, Ke
    Marinsek, Sebastian
    Hong, Wen
    Wu, Yirong
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [33] Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images
    Jun, Wen
    Xu, Haoxiang
    Wang, Zhang
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 183 - 193
  • [34] Land Cover Classification From RGB and NIR Satellite Images Using Modified U-Net Model
    Baek, Won-Kyung
    Lee, Moung-Jin
    Jung, Hyung-Sup
    [J]. IEEE ACCESS, 2024, 12 : 69445 - 69455
  • [35] Joint Network Combining Dual-Attention Fusion Modality and Two Specific Modalities for Land Cover Classification Using Optical and SAR Images
    Liu, Xiao
    Zou, Huijun
    Wang, Shuxiang
    Lin, Yuzhun
    Zuo, Xibing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3236 - 3250
  • [36] Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images
    Kim, Hwisong
    Kim, Duk-jin
    Kim, Junwoo
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (05)
  • [37] Impact of attention mechanisms for organ segmentation in chest x-ray images over U-Net model
    de la Sotta, Tomas
    Chang, Violeta
    Pizarro, Benjamin
    Henriquez, Hector
    Alvear, Nicolas
    Saavedra, Jose M.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 49261 - 49283
  • [38] Impact of attention mechanisms for organ segmentation in chest x-ray images over U-Net model
    Tomás de la Sotta
    Violeta Chang
    Benjamín Pizarro
    Héctor Henriquez
    Nicolás Alvear
    Jose M. Saavedra
    [J]. Multimedia Tools and Applications, 2024, 83 : 49261 - 49283
  • [39] Attention LSTM U-Net model for Drosophila melanogaster heart tube segmentation in optical coherence microscopy images
    Ouyang, Xiangping
    Matt, Abigail
    Wang, Fei
    Gracheva, Elena
    Migunova, Ekaterina
    Rajamani, Saathvika
    Dubrovsky, Edward B.
    Zhou, Chao
    [J]. BIOMEDICAL OPTICS EXPRESS, 2024, 15 (06): : 3639 - 3653
  • [40] SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGERY USING CNN-BASED TRANSFER LEARNING
    Xu, Yan
    Scott, K. Andrea
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3262 - 3265