On autonomous k-means clustering

被引:0
|
作者
Elomaa, T [1 ]
Koivistoinen, H [1 ]
机构
[1] Tampere Univ Technol, Inst Software Syst, FI-33101 Tampere, Finland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is a basic tool in unsupervised machine learning and data mining. One of the simplest clustering approaches is the iterative k-means algorithm. The quality of k-means clustering suffers from being confined to run with fixed k rather than being able to dynamically alter the value of k. Moreover, it would be much more elegant if the user did not have to supply the number of clusters for the algorithm. In this paper we consider recently proposed autonomous versions of the k-means algorithm. We demonstrate some of their shortcomings and put forward solutions for their deficiencies. In particular, we examine the problem of automatically determining a good initial candidate as the number of clusters.
引用
收藏
页码:228 / 236
页数:9
相关论文
共 50 条
  • [11] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [12] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [13] Power k-Means Clustering
    Xu, Jason
    Lange, Kenneth
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [14] Subspace K-means clustering
    Marieke E. Timmerman
    Eva Ceulemans
    Kim De Roover
    Karla Van Leeuwen
    Behavior Research Methods, 2013, 45 : 1011 - 1023
  • [15] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [16] K-means clustering on CGRA
    Lopes, Joao D.
    de Sousa, Jose T.
    Neto, Horacio
    Vestias, Mario
    2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [17] Online k-means Clustering
    Cohen-Addad, Vincent
    Guedj, Benjamin
    Kanade, Varun
    Rom, Guy
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [18] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [19] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [20] PSO Aided k-Means Clustering: Introducing Connectivity in k-Means
    Breaban, Mihaela Elena
    Luchian, Henri
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1227 - 1234