Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur

被引:74
|
作者
Huo, Siqi [1 ]
Wang, Jun [1 ]
Yang, Shuang [2 ]
Chen, Xi [1 ]
Zhang, Bin [1 ]
Wu, Qilei [1 ]
Zhang, Bo [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
epoxy resin; flame retardancy; nitrogen; phosphorus; sulfur; THERMAL-STABILITY; RESIN; DOPO; PHOSPHAPHENANTHRENE; COMPOSITES; TRIAZINE; BEHAVIOR; 9,10-DIHYDRO-9-OXA-10-PHOSPHAPHENANTHRENE-10-OXIDE; DEGRADATION; PYROLYSIS;
D O I
10.1002/pat.4145
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel phosphorus-containing, nitrogen-containing, and sulfur-containing reactive flame retardant (BPD) was successfully synthesized by 1-pot reaction. The intrinsic flame-retardant epoxy resins were prepared by blending different content of BPD with diglycidyl ether of bisphenol-A (DGEBA). Thermal stability, flame-retardant properties, and combustion behaviors of EP/BPD thermosets were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The flame-retardant mechanism of BPD was studied by TGA/infrared spectrometry (TGA-FTIR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), morphology, and chemical component analysis of the char residues. The results demonstrated that EP/BPD thermosets not only exhibited outstanding flame retardancy but also kept high glass transition temperature. EP/BPD-1.0 thermoset achieved LOI value of 39.1% and UL94 V-0 rating. In comparison to pure epoxy thermoset, the average of heat release rate (av-HRR), total heat release (THR), and total smoke release (TSR) of EP/BPD-1.0 thermoset were decreased by 35.8%, 36.5% and 16.5%, respectively. Although the phosphorus content of EP/BPD-0.75 thermoset was lower than that of EP/DOPO thermoset, EP/BPD-0.75 thermoset exhibited better flame retardancy than EP/DOPO thermoset. The significant improvement of flame retardancy of EP/BPD thermosets was ascribed to the blocking effect of phosphorus-rich intumescent char in condensed phase, and the quenching and diluting effects of abundant phosphorus-containing free radicals and nitrogen/sulfur-containing inert gases in gaseous phase. There was flame-retardant synergism between phosphorus, nitrogen, and sulfur of BPD.
引用
收藏
页码:497 / 506
页数:10
相关论文
共 50 条
  • [21] Novel Flame-Retardant Epoxy Composites Containing Aluminium β-Carboxylethylmethylphosphinate
    Liu, Xueqing
    Liu, Jiyan
    Chen, Jia
    Cai, Shaojun
    Hu, Chenlong
    POLYMER ENGINEERING AND SCIENCE, 2015, 55 (03): : 657 - 663
  • [22] Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene
    Lai, Xuejun
    Tang, Shuang
    Li, Hongqiang
    Zeng, Xingrong
    POLYMER DEGRADATION AND STABILITY, 2015, 113 : 22 - 31
  • [23] Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen-Phosphorus Flame Retardant
    Chen, Ming-Jun
    Shao, Zhu-Bao
    Wang, Xiu-Li
    Chen, Li
    Wang, Yu-Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (29) : 9769 - 9776
  • [24] Durable Flame-retardant Finishing of Cotton with a Reactive Phosphorus-based Environmental Flame Retardant
    Chen, Yu
    Liao, Ying
    Zhang, Guangxian
    Zhang, Fengxiu
    JOURNAL OF NATURAL FIBERS, 2022, 19 (16) : 15128 - 15138
  • [25] Durable flame retardant cotton fabrics modified with a novel silicon–phosphorus–nitrogen synergistic flame retardant
    Jian Liu
    Chaohong Dong
    Zheng Zhang
    Heng Sun
    Dezheng Kong
    Zhou Lu
    Cellulose, 2020, 27 : 9027 - 9043
  • [26] Flame-retardant epoxy resins
    Lengsfeld, H
    Altstädt, V
    Döring, M
    Just, B
    Dittrich, U
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (10): : 300 - 304
  • [27] Durable Flame-Retardant Cotton Fabric Modified by a Novel Reactive P-N Intumescent Flame Retardant
    Wu, Denghui
    Li, Xinhang
    Zhao, Peihua
    ADVANCES IN POLYMER TECHNOLOGY, 2023, 2023
  • [28] Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant
    Wang, Chao
    Wu, Yicheng
    Li, Yingchun
    Shao, Qian
    Yan, Xingru
    Han, Cui
    Wang, Zhe
    Liu, Zhen
    Guo, Zhanhu
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2018, 29 (01) : 668 - 676
  • [29] Preparation and Flame-retardant Mechanism of Flame-retardant Air Filter Paper
    Li, Yan
    Sha, Lizheng
    Zhao, Huifang
    Huang, Cheng
    BIORESOURCES, 2019, 14 (04) : 8499 - 8510
  • [30] Preparation of the Intrinsic Flame-Retardant Curing Agent of Inorganic Epoxy Resin Containing Nitrogen and Phosphorus
    Na Wen
    Wei Zeng
    Yaoxia Yang
    Zhiwang Yang
    Hongtao Li
    Xingyao Li
    Qing Li
    Hao Ding
    Ziqiang Lei
    Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32 : 412 - 422