Band Alignment of the CdS/Cu2Zn(Sn1-xGex)Se4 Heterointerface and Electronic Properties at the Cu2Zn(Sn1-xGex)Se4 Surface: x=0, 0.2, and 0.4

被引:28
|
作者
Nagai, Takehiko [1 ]
Shimamura, Takuya [2 ]
Tanigawa, Kohei [2 ]
Iwamoto, Yuya [2 ]
Hamada, Hiroya [2 ]
Ohta, Nobuyoshi [2 ]
Kim, Shinho [1 ]
Tampo, Hitoshi [1 ]
Shibata, Hajime [1 ]
Matsubara, Koji [1 ]
Niki, Shigeru [3 ]
Terada, Norio [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta RCPV, Cent 2,1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[2] Kagoshima Univ, Grad Sch Sci & Engn, 1-21-40 Korimoto, Kagoshima 8900065, Japan
[3] Natl Inst Adv Ind Sci & Technol, Dept Energy & Environm E&E, Cent 1,1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
band alignment; CZTGS; IPES; UPS; XPS; kesterite; solar cell; FILM SOLAR-CELLS; OPTICAL-PROPERTIES; THIN-FILMS; MATERIALS AVAILABILITY; LOW-VOLTAGE; CU2ZNSNSE4; INTERFACE; PERFORMANCE; SPECTRA; GROWTH;
D O I
10.1021/acsami.8b19200
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The surface electronic properties of the light absorber and band alignment at the p/n heterointerface are key issues for high-performance heterojunction solar cells. We investigated the band alignment of the heterointerface between cadmium sulfide (CdS) and Ge-incorporated Cu2ZnSnSe4 (CZTGSe), with Ge/(Ge + Sn) ratios (x) between 0 and 0.4, by X-ray photoelectron, ultraviolet, and inversed photoemission spectroscopies (XPS, UPS, and IPES, respectively). In particular, we used interface-induced band bending in order to determine the conduction band offset (CBO) and valence-band offset (VBO), which were calculated from the core-level shifts of each element in both the CdS overlayer and the CZTGSe bottom layer. Moreover, the surface electronic properties of CZTGSe were also investigated by laser-irradiated XPS. The CBO at the CdS/CZTGSe heterointerface decreased linearly, from +0.36 to +0.20 eV, as x was increased from 0 to 0.4; in contrast, the VBO at the CdS/CZTGSe heterointerface was independent of Ge content. Both UPS and IPES revealed that the Fermi level at the CZTGSe surface is located near the center of the band gap. The hole concentration at the CZTGSe surface was on the order of 10(11) cm(-3), which is much smaller than that of the bulk (similar to 10(16) cm(-3)). We discuss the differences in hole deficiencies near the surface and in the bulk on the basis of laser-irradiated XPS and conclude that hole deficiencies are due to defects distributed near the surface with densities that are lower than in the bulk, and the Fermi level is not pinned at the CZTGSe surface.
引用
收藏
页码:4637 / 4648
页数:12
相关论文
共 50 条
  • [21] Spectroscopic ellipsometry study of Cu2Zn(GexSi1-x)Se4 bulk poly-crystals
    Hajdeu-Chicarosh, Elena
    Levcenko, Sergiu
    Serna, Rosalia
    Bodnar, Ivan V.
    Victorov, Ivan A.
    Iaseniuc, Oxana
    Caballero, Raquel
    Merino, Jose Manuel
    Arushanov, Ernest
    Leon, Maximo
    SOLID STATE SCIENCES, 2022, 132
  • [22] Processing pathways of Cu2Zn(SnGe)Se4 based solar cells: The role of CdS buffer layer
    Vigil-Galan, O.
    Courel, Maykel
    Andrade-Arvizu, J. A.
    Sanchez, Y.
    Espindola-Rodriguez, M.
    Saucedo, E.
    Seuret-Jimenez, D.
    Gonzalez, R.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 67 : 14 - 19
  • [23] Fabricating Cu2Zn(SnxGe1-x)Se4 2 Zn(Sn x Ge 1-x )Se 4 thin-film solar cells with back surface Ge grading by magnetron sputtering
    Hu, Xinghuan
    Yang, Shuai
    Zhao, Yonggang
    Chen, Yufei
    Zhou, Zhineng
    Zhang, Ying
    Su, Xu
    Wu, Lang
    Xu, Congyan
    Wang, Shurong
    PHYSICA B-CONDENSED MATTER, 2024, 691
  • [24] Cu content dependence of Cu2Zn(SnGe)Se4 solar cells prepared by using sequential thermal evaporation technique of Cu/Sn/Cu/Zn/Ge stacked layers
    F. A. Pulgarín-Agudelo
    O. Vigil-Galán
    Jacob A. Andrade-Arvizu
    J. R. González-Castillo
    Eugenio Rodríguez-González
    Maykel Courel
    Y. Sánchez
    E. Saucedo
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 15363 - 15368
  • [25] Cu content dependence of Cu2Zn(SnGe)Se4 solar cells prepared by using sequential thermal evaporation technique of Cu/Sn/Cu/Zn/Ge stacked layers
    Pulgarin-Agudelo, F. A.
    Vigil-Galan, O.
    Andrade-Arvizu, Jacob A.
    Gonzalez-Castillo, J. R.
    Rodriguez-Gonzalez, Eugenio
    Courel, Maykel
    Sanchez, Y.
    Saucedo, E.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (18) : 15363 - 15368
  • [26] Optical properties of quaternary kesterite-type Cu2Zn(Sn1-xGex)S4 crystalline alloys: Raman scattering, photoluminescence and first-principle calculations
    Valakh, M. Ya.
    Litvinchuk, A. P.
    Dzhagan, V. M.
    Yukhymchuk, V. O.
    Havryliuk, Ye. O.
    Guc, M.
    Bodnar, I. V.
    Izquierdo-Roca, V.
    Perez-Rodriguez, A.
    Zahn, D. R. T.
    RSC ADVANCES, 2016, 6 (72) : 67756 - 67763
  • [27] From sputtered metal precursors towards Cu2Zn(Sn1-x,Gex)Se4 thin film solar cells with shallow back grading
    Andres, C.
    Cabas-Vidani, A.
    Tiwari, A. N.
    Romanyuk, Y. E.
    THIN SOLID FILMS, 2018, 665 : 168 - 172
  • [28] Influence of Ge content on Cu2Zn(SnGe)Se4 physical properties deposited by sequential thermal evaporation technique
    Gonzalez-Castillo, J. R.
    Pulgarin-Agudelo, F. A.
    Rodriguez-Gonzalez, Eugenio
    Vigil-Galan, O.
    Courel-Piedrahita, Maykel
    Andrade-Arvizu, J. A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 83 : 96 - 101
  • [29] EFFECT OF GeSe2 ON THE PREPARATION AND PROPERTIES OF Cu2Zn(Sn,Ge)(S,Se)4 FILMS
    Gao, C.
    Du, L.
    Teng, X.
    Yu, W.
    CHALCOGENIDE LETTERS, 2018, 15 (08): : 411 - 417
  • [30] Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film Solar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals
    Kim, Inhyuk
    Kim, Kyujin
    Oh, Yunjung
    Woo, Kyoohee
    Cao, Guozhong
    Jeong, Sunho
    Moon, Jooho
    CHEMISTRY OF MATERIALS, 2014, 26 (13) : 3957 - 3965