Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition

被引:20
|
作者
Akemann, Gernot [1 ]
Nagao, Taro [2 ]
机构
[1] Univ Bielefeld, Dept Phys, D-33501 Bielefeld, Germany
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 648602, Japan
来源
基金
日本学术振兴会;
关键词
Matrix Models; Lattice QCD; Chiral Lagrangians; GAUSSIAN ENSEMBLES; SPECTRAL DENSITY; EIGENVALUE; LATTICE; UNIVERSALITY; EXPRESSIONS; UNITARY; MODELS; LIMIT;
D O I
10.1007/JHEP10(2011)060
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce a random two-matrix model interpolating between a chiral Hermitian (2n+nu)x(2n+nu) matrix and a second Hermitian matrix without symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE) and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large-n limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit) this theory is in one to one correspondence to the partition function of Wilson chiral perturbation theory in the epsilon regime, such as the related two matrix-model previously introduced in [32, 33]. For a generic number of flavours and rectangular block matrices in the chGUE part we derive an eigenvalue representation for the partition function displaying a Pfaffian structure. In the quenched case with nu = 0, 1 we derive all spectral correlations functions in our model for finite-n, given in terms of skew-orthogonal polynomials. The latter are expressed as Gaussian integrals over standard Laguerre polynomials. In the weakly non-chiral microscopic limit this yields all corresponding quenched eigenvalue correlation functions of the Hermitian Wilson operator.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608
  • [22] Eigenvalues of the hermitian Wilson-Dirac operator and chiral properties of the domain-wall fermion
    Khan, AA
    Aoki, S
    Burkhalter, R
    Ejiri, S
    Fukugita, M
    Hashimoto, S
    Ishizuka, N
    Iwasaki, Y
    Izubuchi, T
    Kanaya, K
    Kanebo, T
    Kuramashi, Y
    Manke, T
    Nagai, KI
    Noaki, J
    Okawa, M
    Shanahan, HP
    Taniguchi, Y
    Ukawa, A
    Yoshié, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 725 - 728
  • [23] Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator
    Bergner, Georg
    Wuilloud, Jair
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (02) : 299 - 304
  • [24] Duality in non-Hermitian random matrix theory
    Liu, Dang-Zheng
    Zhang, Lu
    NUCLEAR PHYSICS B, 2024, 1004
  • [25] Non-Hermitian Euclidean random matrix theory
    Goetschy, A.
    Skipetrov, S. E.
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [26] Comparing lattice Dirac operators with Random Matrix Theory
    Farchioni, F
    Hip, I
    Lang, CB
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 482 - 484
  • [27] Dirac operator as a random matrix and the quenched limit of QCD with chemical potential
    Stephanov, MA
    NUCLEAR PHYSICS B, 1997, : 469 - 471
  • [28] Non-Gaussian non-hermitian random matrix theory: Phase transition and addition formalism
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 501 (03) : 643 - 669
  • [29] Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism
    Feinberg, J.
    Zee, A.
    Nuclear Physics, Section B, 501 (03):
  • [30] Gap probabilities in non-Hermitian random matrix theory
    Akemann, G.
    Phillips, M. J.
    Shifrin, L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)