A hybrid convolutional neural network for super-resolution reconstruction of MR images

被引:18
|
作者
Zheng, Yingjie [1 ,2 ]
Zhen, Bowen [1 ,2 ]
Chen, Aichi [3 ]
Qi, Fulang [1 ,2 ]
Hao, Xiaohan [1 ,2 ]
Qiu, Bensheng [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Ctr Biomed Engn, Hefei 230026, Anhui, Peoples R China
[3] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA 90095 USA
关键词
convolutional neural network; hybrid network; MR images; super-resolution;
D O I
10.1002/mp.14152
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Spatial resolution is an important parameter for magnetic resonance imaging (MRI). High-resolution MR images provide detailed information and benefit subsequent image analysis. However, higher resolution MR images come at the expense of longer scanning time and lower signal-to-noise ratios (SNRs). Using algorithms to improve image resolution can mitigate these limitations. Recently, some convolutional neural network (CNN)-based super-resolution (SR) algorithms have flourished on MR image reconstruction. However, most algorithms usually adopt deeper network structures to improve the performance. Methods In this study, we propose a novel hybrid network (named HybridNet) to improve the quality of SR images by increasing the width of the network. Specifically, the proposed hybrid block combines a multipath structure and variant dense blocks to extract abundant features from low-resolution images. Furthermore, we fully exploit the hierarchical features from different hybrid blocks to reconstruct high-quality images. Results All SR algorithms are evaluated using three MR image datasets and the proposed HybridNet outperformed the comparative methods with peak a signal-to-noise ratio (PSNR) of 42.12 +/- 0.92 dB, 38.60 +/- 2.46 dB, 35.17 +/- 2.96 dB and a structural similarity index (SSIM) of 0.9949 +/- 0.0015, 0.9892 +/- 0.0034, 0.9740 +/- 0.0064, respectively. Besides, our proposed network can reconstruct high-quality images on an unseen MR dataset with PSNR of 33.27 +/- 1.56 and SSIM of 0.9581 +/- 0.0068. Conclusions The results demonstrate that HybridNet can reconstruct high-quality SR images from degraded MR images and has good generalization ability. It also can be leveraged to assist the task of image analysis or processing.
引用
收藏
页码:3013 / 3022
页数:10
相关论文
共 50 条
  • [21] A super-resolution enhancement of UAV images based on a convolutional neural network for mobile devices
    Daniel González
    Miguel A. Patricio
    Antonio Berlanga
    José M. Molina
    Personal and Ubiquitous Computing, 2022, 26 : 1193 - 1204
  • [22] A super-resolution enhancement of UAV images based on a convolutional neural network for mobile devices
    Gonzalez, Daniel
    Patricio, Miguel A.
    Berlanga, Antonio
    Molina, Jose M.
    PERSONAL AND UBIQUITOUS COMPUTING, 2019, 26 (4) : 1193 - 1204
  • [23] Obtaining Super-Resolution Satellites Images Based on Enhancement Deep Convolutional Neural Network
    Hatem Magdy Keshk
    Xu-Cheng Yin
    International Journal of Aeronautical and Space Sciences, 2021, 22 : 195 - 202
  • [24] A terahertz image super-resolution reconstruction algorithm based on the deep convolutional neural network
    Li, Zeng
    Cen, Zhaofeng
    Li, Xiaotong
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [25] Super-resolution Solar Spectral Irradiance Reconstruction Method Based on Convolutional Neural Network
    Zhang, Peng
    Weng, Jianwen
    Kang, Qing
    Li, Jianjun
    ACTA PHOTONICA SINICA, 2025, 54 (03)
  • [26] Transparent Object Reconstruction Based on Compressive Sensing and Super-Resolution Convolutional Neural Network
    Mathai, Anumol
    Mengdi, Li
    Lau, Stephen
    Guo, Ningqun
    Wang, Xin
    PHOTONIC SENSORS, 2022, 12 (04)
  • [27] Transparent Object Reconstruction Based on Compressive Sensing and Super-Resolution Convolutional Neural Network
    Anumol Mathai
    Li Mengdi
    Stephen Lau
    Ningqun Guo
    Xin Wang
    Photonic Sensors, 2022, 12
  • [28] A two-channel hybrid convolutional residual network for super-resolution of infrared images
    Gan, Yong
    Chen, Haonan
    Zhou, Shaohui
    Wang, Yuefeng
    27TH IEEE/ACIS INTERNATIONAL SUMMER CONFERENCE ON SOFTWARE ENGINEERING ARTIFICIAL INTELLIGENCE NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, SNPD 2024-SUMMER, 2024, : 171 - 176
  • [29] Shape-Supervised Super-Resolution Convolutional Neural Network for Melt Droplet Images
    Liu, Xiaoke
    Lu, Xiaoxiao
    Wang, Xiaoqing
    Yu, Qiang
    Liu, Laijun
    Wang, Yuehai
    Ning, Keqing
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2021, 33 (04)
  • [30] Shape-Supervised Super-Resolution Convolutional Neural Network for Melt Droplet Images
    Xiaoke Liu
    Xiaoxiao Lu
    Xiaoqing Wang
    Qiang Yu
    Laijun Liu
    Yuehai Wang
    Keqing Ning
    Microgravity Science and Technology, 2021, 33