Reconciling Graphs and Sets of Sets

被引:10
|
作者
Mitzenmacher, Michael [1 ]
Morgan, Tom [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
关键词
Set reconciliation; hashing; invertible Bloom lookup tables; graph isomorphism;
D O I
10.1145/3196959.3196988
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We explore a generalization of set reconciliation, where the goal is to reconcile sets of sets. Alice and Bob each have a parent set consisting of s child sets, each containing at most h elements from a universe of size u. They want to reconcile their sets of sets in a scenario where the total number of differences between all of their child sets (under the minimum difference matching between their child sets) is d. We give several algorithms for this problem, and discuss applications to reconciliation problems on graphs, databases, and collections of documents. We specifically focus on graph reconciliation, providing protocols based on set of sets reconciliation for random graphs from G(n, p) and for forests of rooted trees.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
  • [31] ON UNIQUE INDEPENDENT SETS IN GRAPHS
    SIEMES, W
    TOPP, J
    VOLKMANN, L
    DISCRETE MATHEMATICS, 1994, 131 (1-3) : 279 - 285
  • [32] Graphs of commutatively closed sets
    Abdi, M.
    Leroy, A.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6965 - 6977
  • [33] 2 SETS OF GRACEFUL GRAPHS
    DELORME, C
    JOURNAL OF GRAPH THEORY, 1980, 4 (02) : 247 - 250
  • [34] BOUNDARY INTERSECTION SETS IN GRAPHS
    ESCALANTE, F
    GALLAI, T
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1974, 25 (1-2): : 93 - 98
  • [35] DOMINATING SETS AND EIGENVALUES OF GRAPHS
    ROWLINSON, P
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 248 - 254
  • [36] Resolving Sets in Temporal Graphs
    Bok, Jan
    Dailly, Antoine
    Lehtila, Tuomo
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 287 - 300
  • [37] Critical Sets in Bipartite Graphs
    Vadim E. Levit
    Eugen Mandrescu
    Annals of Combinatorics, 2013, 17 : 543 - 548
  • [38] Integral graphs and (κ, τ)-regular sets
    Carvalho, Paula
    Rama, Paula
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2409 - 2417
  • [39] Dominating sets in directed graphs
    Pang, Chaoyi
    Zhang, Rui
    Zhang, Qing
    Wang, Junhu
    INFORMATION SCIENCES, 2010, 180 (19) : 3647 - 3652
  • [40] Contagious sets in dense graphs
    Freund, Daniel
    Poloczek, Matthias
    Reichman, Daniel
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 68 : 66 - 78