Optimization of molecular beam epitaxial film thickness uniformity using Monte Carlo simulations and an artificial neural network

被引:0
|
作者
Liang, Kang [1 ,2 ,3 ]
Zhang, Zhao [1 ]
Wu, Gai [1 ]
Gan, Zhiyin [4 ]
Liu, Sheng [1 ,2 ,4 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 06期
基金
中国国家自然科学基金;
关键词
PHYSICAL-VAPOR-DEPOSITION; FLUX-DISTRIBUTION; ANGULAR-DISTRIBUTION; GROWTH;
D O I
10.1063/5.0076168
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The thickness uniformity of the molecular beam epitaxial film is one of the most important factors affecting the quality of the film, and it is mainly influenced by the angular distribution of the molecular source, which is mainly determined by the inner wall shape of the crucible. In this paper, an optimization method based on particle swarm optimization, Monte Carlo simulations, and an artificial neural network is proposed, aiming at optimizing the epitaxial film uniformity in the molecular beam epitaxy process. The optimum angular distribution of an effusion source is obtained by using the method of particle swarm optimization for a given geometric configuration. The Monte Carlo method is used to simulate the particle evaporation process to obtain the relationship between the shape parameters of the crucible inner wall and the particle angular distribution. The optimum crucible shape parameters are subsequently obtained under a particular apparatus geometric configuration by using the artificial neural network according to the above relationship and the desired optimum angular distribution. Finally, the optimized results are compared by experiments. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Analysis of liquid suspensions using scanning electron microscopy in transmission: estimation of the water film thickness using Monte-Carlo simulations
    Xiao, J.
    Foray, G.
    Masenelli-Varlot, K.
    JOURNAL OF MICROSCOPY, 2018, 269 (02) : 151 - 160
  • [42] MOLECULAR-BEAM EPITAXIAL-GROWTH OF SI(001) - A MONTE-CARLO STUDY
    KERSULIS, S
    MITIN, V
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (05) : 653 - 659
  • [43] Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations
    Aleksandra Šiljić
    Davor Antanasijević
    Aleksandra Perić-Grujić
    Mirjana Ristić
    Viktor Pocajt
    Environmental Science and Pollution Research, 2015, 22 : 4230 - 4241
  • [44] Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations
    Siljic, Aleksandra
    Antanasijevic, Davor
    Peric-Grujic, Aleksandra
    Ristic, Mirjana
    Pocajt, Viktor
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (06) : 4230 - 4241
  • [45] Dynamical Monte Carlo studies of molecular beam epitaxial growth models: Interfacial scaling and morphology
    Meng, B
    Weinberg, WH
    SURFACE SCIENCE, 1996, 364 (02) : 151 - 163
  • [46] Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations
    Thomsen, M.
    Knudsen, E. B.
    Willendrup, P. K.
    Bech, M.
    Willner, M.
    Pfeiffer, F.
    Poulsen, M.
    Lefmann, K.
    Feidenhans'l, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 342 : 314 - 320
  • [47] Nanodosimetry in a 12C ion beam using Monte Carlo simulations
    Hultqvist, M.
    Lillhok, J-E.
    Lindborg, L.
    Gudowska, I.
    Nikjoo, H.
    RADIATION MEASUREMENTS, 2010, 45 (10) : 1238 - 1241
  • [48] Optimization of An Artificial Neural Network for Photon Beam Profile Deconvolution
    Li, F.
    Lebron, S.
    Wu, J.
    Barraclough, B.
    Park, J.
    Liu, C.
    Yan, G.
    MEDICAL PHYSICS, 2017, 44 (06) : 3154 - 3154
  • [49] Stator optimization using artificial neural network
    Liu, Bo
    Xuan, Yang
    Chen, Yun-Yong
    Tuijin Jishu/Journal of Propulsion Technology, 2009, 30 (05): : 576 - 580
  • [50] Investigation of stereotactic radiotherapy dose using dosimetry film and Monte Carlo simulations
    Kairn, T.
    Crowe, S.
    Kenny, J.
    Trapp, J. V.
    RADIATION MEASUREMENTS, 2011, 46 (12) : 1985 - 1988