Micropipe evolution in silicon carbide

被引:15
|
作者
Gutkin, MY
Sheinerman, AG
Argunova, TS
Mokhov, EN
Je, JH
Hwu, YK
Tsai, WL
Margaritondo, G
机构
[1] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea
[2] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
[4] Acad Sinica, Inst Phys, Taipei, Taiwan
[5] Ecole Polytech Fed Lausanne, Inst Phys Appl, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1063/1.1609038
中图分类号
O59 [应用物理学];
学科分类号
摘要
Micropipe bundling and twisting in SiC crystals was revealed using synchrotron x-ray phase sensitive radiography. The computer simulation of micropipe evolution during the crystal growth suggests that the bundled and twisted micropipes arise under the influence of stress fields from other neighboring micropipes. The annihilation of twisted dipoles is attributed to their transformation into semiloops. Reactions of micropipe coalescence lead to the generation of micropipes and/or the annihilation of initial micropipes, resulting in the decrease in their average density. (C) 2003 American Institute of Physics.
引用
收藏
页码:2157 / 2159
页数:3
相关论文
共 50 条
  • [1] The mechanism of micropipe nucleation at inclusions in silicon carbide
    Dudley, M
    Huang, XR
    Huang, W
    Powell, A
    Wang, S
    Neudeck, P
    Skowronski, M
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (06) : 784 - 786
  • [2] Contact-free micropipe reactions in silicon carbide
    Sheinerman, A. G.
    Gutkin, M. Yu.
    Argunova, T. S.
    Mokhov, E. N.
    Nagalyuk, S. N.
    Je, J. H.
    [J]. SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 : 597 - +
  • [3] Dislocations as a source of micropipe development in the growth of silicon carbide
    Cherednichenko, DI
    Khlebnikov, YI
    Khlebnikov, II
    Drachev, RV
    Sudarshan, TS
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (07) : 4139 - 4141
  • [4] Statistical analysis of micropipe defect distributions in silicon carbide crystals
    Elkington, T
    Emorhokpor, E
    Kerr, T
    Chen, J
    Essary, K
    Golab, M
    Hopkins, RH
    [J]. NEW APPLICATIONS FOR WIDE-BANDGAP SEMICONDUCTORS, 2003, 764 : 177 - 182
  • [5] PERFORMANCE LIMITING MICROPIPE DEFECTS IN SILICON-CARBIDE WAFERS
    NEUDECK, PG
    POWELL, JA
    [J]. IEEE ELECTRON DEVICE LETTERS, 1994, 15 (02) : 63 - 65
  • [6] Silicon carbide CVD homoepitaxy on wafers with reduced micropipe density
    Saddow, SE
    Mazzola, MS
    Rendakova, SV
    Dmitriev, VA
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 61-2 : 158 - 160
  • [7] TEM investigation of silicon carbide wafers with reduced micropipe density
    Saddow, SE
    Schattner, TE
    Shamsuzzoha, M
    Rendakova, SV
    Dmitriev, VA
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (03) : 364 - 367
  • [8] Silicon carbide CVD homoepitaxy on wafers with reduced micropipe density
    Saddow, S.E.
    Mazzola, M.S.
    Rendakova, S.V.
    Dmitriev, V.A.
    [J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61 : 158 - 160
  • [9] Vacancy model of micropipe annihilation in epitaxial silicon carbide layers
    S. Yu. Davydov
    A. A. Lebedev
    [J]. Semiconductors, 2011, 45
  • [10] Vacancy Model of Micropipe Annihilation in Epitaxial Silicon Carbide Layers
    Davydov, S. Yu.
    Lebedev, A. A.
    [J]. SEMICONDUCTORS, 2011, 45 (06) : 727 - 730