Combined non-parametric and parametric approach for identification of time-variant systems

被引:16
|
作者
Dziedziech, Kajetan [1 ]
Czop, Piotr [1 ]
Staszewski, Wieslaw J. [1 ]
Uhl, Tadeusz [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Robot & Mechatron, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
System identification; Modal analysis; Time-variant systems; Natural frequency; Damping ratio; Wavelets; Parametric recursive models; FREQUENCY-RESPONSE FUNCTION; MODAL IDENTIFICATION; VARYING SYSTEMS; ALGORITHM; OPERATORS; DYNAMICS; OUTPUT; DOMAIN;
D O I
10.1016/j.ymssp.2017.10.020
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 50 条
  • [31] Non-parametric time series classification
    Lenser, S
    Veloso, M
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3918 - 3923
  • [32] A Non-Parametric LPV Approach to the Indentification of Linear Periodic Systems
    dos Santos, Paulo Lopes
    Azevedo Perdicoulis, T-P
    IFAC PAPERSONLINE, 2021, 54 (08): : 13 - 19
  • [33] Interpretation of Non-Parametric Estimates of Time-Varying Systems
    Ludvig, Daniel
    Perreault, Eric J.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2701 - 2706
  • [34] A non-parametric approach for dynamic range estimation of nonlinear systems
    Wu, B
    Zhu, JW
    Najm, FN
    42nd Design Automation Conference, Proceedings 2005, 2005, : 841 - 844
  • [35] On the theory of non-parametric control systems
    Medvedev, Alexander, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2013, 22 (01): : 6 - 19
  • [36] A Discrete-time AILC for Systems with Non-parametric Uncertainties
    Chi Ronghu
    Hou Zhongsheng
    Jin Shangtai
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5877 - 5882
  • [37] Reliability analysis of vibro-acoustic systems with combined parametric and non-parametric probabilistic uncertainty models
    Cicirello, A.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 1705 - 1719
  • [38] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [39] An interactive term approach to non-parametric FIR nonlinear system identification
    Bai, Er-Wei
    Deistler, Manfred
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 179 - 184
  • [40] On the Use of Parametric and Non-Parametric Noise-models in time- and frequency domain System Identification
    Schoukens, J.
    Rolain, Y.
    Pintelon, R.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 316 - 321