High-Performance Cryogen-Free Platform for Microkelvin-Range Refrigeration

被引:4
|
作者
Nyeki, J. [1 ]
Lucas, M. [1 ]
Knappova, P. [1 ]
Levitin, L., V [1 ]
Casey, A. [1 ]
Saunders, J. [1 ]
van der Vliet, H. [2 ]
Matthews, A. J. [2 ]
机构
[1] Royal Holloway Univ London, Dept Phys, Egham TW20 0EX, Surrey, England
[2] Oxford Instruments NanoSci, Abingdon OX13 5QX, Oxon, England
关键词
NUCLEAR DEMAGNETIZATION; THERMAL-CONDUCTIVITY; SUPERCONDUCTIVITY; THERMOMETRY; PRNI5; STATE; HE-3;
D O I
10.1103/PhysRevApplied.18.L041002
中图分类号
O59 [应用物理学];
学科分类号
摘要
Improved accessibility to the microkelvin temperature regime is important for future research in quan-tum materials, for quantum information science, and for applications of quantum sensors. Here, we report the design and performance of a microkelvin platform based on a nuclear-demagnetization stage, engineered and well optimized for operation on a standard cryogen-free dilution refrigerator. PrNi5 is used as the dominant refrigerant. The platform provides a large area for mounting experiments in an ultralow-temperature low-electromagnetic-noise environment. The performance is characterized using current-sensing noise thermometry. Temperatures as low as 395 mu K are reached and a protocol is estab-lished in which it is possible to operate experiments below 1 mK for 95% of the time, providing an efficient cryogen-free microkelvin environment for a wide range of science applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] First ground-based, high-field, cryogen-free, mobile intraoperative magnetic resonance imaging system
    Lang, Michael L.
    Zhang, Qiang
    Chen, Xiaolei
    Yan, Niandong
    Zhu, Haoqin
    Martin, Melanie
    Yu, Feng
    Niu, Chaoshi
    Zhang, Gong
    Zeng, Qiang
    MAGNETIC RESONANCE IMAGING, 2023, 99 : 1 - 7
  • [32] High precision and continuous field measurements of δ13C and δ18O in carbon dioxide with a cryogen-free QCLAS
    B. Tuzson
    J. Mohn
    M.J. Zeeman
    R.A. Werner
    W. Eugster
    M.S. Zahniser
    D.D. Nelson
    J.B. McManus
    L. Emmenegger
    Applied Physics B, 2008, 92
  • [33] High-performance electroluminescent refrigeration enabled by photon tunneling
    Liu, Xianglei
    Zhang, Zhuomin M.
    NANO ENERGY, 2016, 26 : 353 - 359
  • [34] High-performance magnetic refrigeration materials: Prediction and realization
    Tian, Lu
    Mo, Zhaojun
    Sun, Haobo
    Gong, Jianjian
    Gao, Xinqiang
    Liu, Jun
    Liu, Guodong
    Shen, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 991
  • [35] High precision and continuous field measurements of δ13C and δ18O in carbon dioxide with a cryogen-free QCLAS
    Tuzson, B.
    Mohn, J.
    Zeeman, M. J.
    Werner, R. A.
    Eugster, W.
    Zahniser, M. S.
    Nelson, D. D.
    McManus, J. B.
    Emmenegger, L.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 92 (03): : 451 - 458
  • [36] A HIGH-PERFORMANCE TRANSPORT NETWORK PLATFORM
    LEBIZAY, G
    GALAND, C
    CHEVALIER, D
    BARRE, F
    IBM SYSTEMS JOURNAL, 1995, 34 (04) : 705 - 724
  • [37] A High-Performance SoC Debug Platform
    Liu, Kuo-Kai
    Hsu, Wen-Hsuan
    Lee, Kuen-Jong
    SMART SCIENCE, 2015, 3 (04) : 202 - 208
  • [38] High-performance transport network platform
    IBM Syst J, 4 (705-724):
  • [39] A rapid sample-exchange mechanism for cryogen-free dilution refrigerators compatible with multiple high-frequency signal connections
    Batey, G.
    Chappell, S.
    Cuthbert, M. N.
    Erfani, M.
    Matthews, A. J.
    Teleberg, G.
    CRYOGENICS, 2014, 60 : 24 - 32
  • [40] High-performance laser range scanner
    Hancock, J
    Hoffman, E
    Sullivan, R
    Ingimarson, D
    Langer, D
    Hebert, M
    INTELLIGENT TRANSPORTATION SYSTEMS, 1998, 3207 : 40 - 49