Manipulating surface states in topological insulator nanoribbons

被引:375
|
作者
Xiu, Faxian [1 ]
He, Liang [1 ]
Wang, Yong [1 ,2 ]
Cheng, Lina [2 ]
Chang, Li-Te [1 ]
Lang, Murong [1 ]
Huang, Guan [1 ]
Kou, Xufeng [1 ]
Zhou, Yi [1 ]
Jiang, Xiaowei [1 ]
Chen, Zhigang [2 ]
Zou, Jin [2 ]
Shailos, Alexandros [3 ]
Wang, Kang L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
澳大利亚研究理事会;
关键词
SINGLE DIRAC CONE; OSCILLATIONS; BI2SE3;
D O I
10.1038/nnano.2011.19
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Topological insulators display unique properties, such as the quantum spin Hall effect, because time-reversal symmetry allows charges and spins to propagate along the edge or surface of the topological insulator without scattering(1-14). However, the direct manipulation of these edge/surface states is difficult because they are significantly outnumbered by bulk carriers(9,15,16). Here, we report experimental evidence for the modulation of these surface states by using a gate voltage to control quantum oscillations in Bi2Te3 nanoribbons. Surface conduction can be significantly enhanced by the gate voltage, with the mobility and Fermi velocity reaching values as high as similar to 5,800 cm(2)V(-1)s(-1) and similar to 3.7x10(5) ms(-1), respectively, with up to similar to 51% of the total conductance being due to the surface states. We also report the first observation of h/2e periodic oscillations, suggesting the presence of time-reversed paths with the same relative zero phase at the interference point(16). The high surface conduction and ability to manipulate the surface states demonstrated here could lead to new applications in nanoelectronics and spintronics.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 50 条
  • [21] Effective Hamiltonian for surface states of topological insulator nanotubes
    Zhuo Bin Siu
    Seng Ghee Tan
    Mansoor B. A. Jalil
    [J]. Scientific Reports, 7
  • [22] Electronic confinement of surface states in a topological insulator nanowire
    Saxena, Ruchi
    Grosfeld, Eytan
    de Graaf, Sebastian E.
    Lindstrom, Tobias
    Lombardi, Floriana
    Deb, Oindrila
    Ginossar, Eran
    [J]. PHYSICAL REVIEW B, 2022, 106 (03)
  • [23] Quantum pumping through the surface states of a topological insulator
    Nikoofard, Hossein
    Esmaeilzadeh, Mahdi
    Farghadan, Rouhollah
    Sun, Jia Tao
    [J]. PHYSICAL REVIEW B, 2022, 106 (16)
  • [24] Excitonic condensation for the surface states of topological insulator bilayers
    Wang, Zhigang
    Hao, Ningning
    Fu, Zhen-Guo
    Zhang, Ping
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [25] Topological insulator ribbon: Surface states and dynamical response
    Hao, Lei
    Thalmeier, Peter
    Lee, T. K.
    [J]. PHYSICAL REVIEW B, 2011, 84 (23):
  • [26] Modification and Control of Topological Insulator Surface States Using Surface Disorder
    Sacksteder, Vincent
    Ohtsuki, Tomi
    Kobayashi, Koji
    [J]. PHYSICAL REVIEW APPLIED, 2015, 3 (06):
  • [27] Bulk-free topological insulator Bi2Se3 nanoribbons with magnetotransport signatures of Dirac surface states
    Kunakova, Gunta
    Galletti, Luca
    Charpentier, Sophie
    Andzane, Jana
    Erts, Donats
    Leonard, Francois
    Spataru, Catalin D.
    Bauch, Thilo
    Lombardi, Floriana
    [J]. NANOSCALE, 2018, 10 (41) : 19595 - 19602
  • [28] Robustness of topological superconductivity in proximity-coupled topological insulator nanoribbons
    Sitthison, Piyapong
    Stanescu, Tudor D.
    [J]. PHYSICAL REVIEW B, 2014, 90 (03):
  • [29] Aharonov-Bohm interference in topological insulator nanoribbons
    Peng, Hailin
    Lai, Keji
    Kong, Desheng
    Meister, Stefan
    Chen, Yulin
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    Shen, Zhi-Xun
    Cui, Yi
    [J]. NATURE MATERIALS, 2010, 9 (03) : 225 - 229
  • [30] Robust Majorana bound states in magnetic topological insulator nanoribbons with fragile chiral edge channels
    Burke, Declan
    Heffels, Dennis
    Moors, Kristof
    Schueffelgen, Peter
    Gruetzmacher, Detlev
    Connolly, Malcolm R.
    [J]. PHYSICAL REVIEW B, 2024, 109 (04)