The trisecant identity and operator theory

被引:3
|
作者
McCullough, S [1 ]
机构
[1] UNIV FLORIDA,DEPT MATH,GAINESVILLE,FL 32611
关键词
D O I
10.1007/BF01192045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the special case of a Riemann surface which arises as the double of a planar domain R, the trisecant identity has a natural interpretation as a relation among reproducing kernels for subspaces of the Hardy space H-2(R). This relation and Riemann's theorem on the vanishing of the theta function is applied to Nevanlinna-Pick interpolation on R.
引用
收藏
页码:104 / 127
页数:24
相关论文
共 50 条
  • [31] NOTE ON A q-OPERATOR IDENTITY
    Fang, Jian-Ping
    ARS COMBINATORIA, 2012, 105 : 395 - 401
  • [32] Borwein identity and vertex operator algebras
    Kitazume, M
    Miyamoto, M
    Yamada, H
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 100 - 108
  • [33] INVERSION OF A DYNAMICAL SYSTEM BY AN OPERATOR IDENTITY
    HAGANDER, P
    AUTOMATICA, 1972, 8 (03) : 361 - &
  • [34] Folner Sequences in Operator Theory and Operator Algebras
    Ara, Pere
    Lledo, Fernando
    Yakubovich, Dmitry V.
    OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 : 1 - 24
  • [35] To the Theory of Operator Monotone and Operator Convex Functions
    Dinh Trung Hoa
    Tikhonov, O. E.
    RUSSIAN MATHEMATICS, 2010, 54 (03) : 7 - 11
  • [36] ON THE THEORY OF RECURSION OPERATOR
    ZAKHAROV, VE
    KONOPELCHENKO, BG
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (04) : 483 - 509
  • [37] Identity Salience and Identity Importance in Identity Theory
    Morris, R. C.
    CURRENT RESEARCH IN SOCIAL PSYCHOLOGY, 2013, 21
  • [38] On the operator of the theory of cracks
    Kuznetsov, SV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1996, 323 (07): : 427 - 432
  • [39] THEORY OF POLARIZATION OPERATOR
    PISKOVOI, VN
    TSEKVAVA, BE
    SOVIET PHYSICS SOLID STATE,USSR, 1965, 7 (04): : 908 - +
  • [40] THE THEORY OF OPERATOR CALCULUS
    DITKIN, VA
    DOKLADY AKADEMII NAUK SSSR, 1957, 116 (01): : 15 - 17